8,340 research outputs found

    New limits on top squark NLSP from ATLAS 4.7 fb−1fb^{-1} data

    Full text link
    Using the ATLAS 4.7 fb−1fb^{-1} data on new physics search in the jets + \met channel, we obtain new limits on the lighter top squark (t~1\tilde t_1) considering all its decay modes assuming that it is the next to lightest supersymmetric particle (NLSP). If the decay \lstop \ra c \lspone dominates and the production of dark matter relic density is due to NLSP - LSP co-annihilation then the lower limit on \mlstop is 240 GeV. The limit changes to 200 GeV if the decay \lstop \ra b W \lspone dominates. Combining these results it follows that \lstop NLSP induced baryogenesis is now constrained more tightly.Comment: 9 pages, 2 figures, published in MPL

    Emergence of a non-scaling degree distribution in bipartite networks: a numerical and analytical study

    Full text link
    We study the growth of bipartite networks in which the number of nodes in one of the partitions is kept fixed while the other partition is allowed to grow. We study random and preferential attachment as well as combination of both. We derive the exact analytical expression for the degree-distribution of all these different types of attachments while assuming that edges are incorporated sequentially, i.e., a single edge is added to the growing network in a time step. We also provide an approximate expression for the case when more than one edge are added in a time step. We show that depending on the relative weight between random and preferential attachment, the degree-distribution of this type of network falls into one of four possible regimes which range from a binomial distribution for pure random attachment to an u-shaped distribution for dominant preferential attachment

    TeV-scale electron Compton scattering in the Randall-Sundrum scenario

    Get PDF
    The spin-2 graviton excitations in the Randall-Sundrum gravity model provides a t-channel contribution to electron Compton scattering which competes favourably with the standard QED contributions. The phenomenological implications of these contributions to the unpolarized and polarized cross-sections are evaluated.Comment: 11 pages, 5 figure

    Unparticle physics in top pair signals at the LHC and ILC

    Full text link
    We study the effects of unparticle physics in the pair productions of top quarks at the LHC and ILC. By considering vector, tensor and scalar unparticle operators, as appropriate, we compute the total cross sections for pair production processes depending on scale dimension d_{\U}. We find that the existence of unparticles would lead to measurable enhancements on the SM predictions at the LHC. In the case of ILC this may become two orders of magnitude larger than that of SM, for smaller values of d_\U, a very striking signal for unparticles.Comment: 19 pages, 9 figures, analysis for ILC has been adde

    Comparison of perturbative expansions using different phonon bases for two-site Holstein model

    Full text link
    The two-site single-polaron problem is studied within the perturbative expansions using different standard phonon basis obtained through the Lang Firsov (LF), modified LF (MLF) and modified LF transformation with squeezed phonon states (MLFS). The role of these convergent expansions using the above prescriptions in lowering the energy and in determining the correlation functions are compared for different values of coupling strength. The single-electron energy, oscillator wave functions and correlation functions are calculated for the same system. The applicability of different phonon basis in different regimes of the coupling strength as well as in different regimes of hopping are also discussed.Comment: 24 pages (RevTEX), 12 postscript figures, final version accepted in PRB(2000) Jornal Ref: Phys. Rev. B, 61, 4592-4602 (2000

    Fractal Inspired Models of Quark and Gluon Distributions and Longitudinal Structure Function FL(x, Q2) at small x

    Full text link
    In recent years, Fractal Inspired Models of quark and gluon densities at small x have been proposed. In this paper, we investigate longitudinal structure function F-L (x, Q2) within this approach. We make predictions using the QCD based approximate relation between the longitudinal structure function and the gluon density. As the Altarelli-Martinelli equation for the longitudinal structure function cannot be applied to Model I due to the presence of a singularity in the Bjorken x-space we consider Model II only. The qualitative feature of the prediction of Model II is found to be compatible with the QCD expectation.Comment: 11 pages, 4 figures, Accepted for publication on 10-07-2010 in Indian Journal of Physic

    Proton Decay and Related Processes in Unified Models with Gauged Baryon Number:

    Full text link
    In unification models based on SU(15) or SU(16), baryon number is part of the gauge symmetry, broken spontaneously. In such models, we discuss various scenarios of important baryon number violating processes like proton decay and neutron-antineutron oscillation. Our analysis depends on the effective operator method, and covers many variations of symmetry breaking, including different intermediate groups and different Higgs boson content. We discuss processes mediated by gauge bosons and Higgs bosons parallely. We show how accidental global or discrete symmetries present in the full gauge invariant Lagrangian restrict baryon number violating processes in these models. In all cases, we find that baryon number violating interactions are sufficiently suppressed to allow grand unification at energies much lower than the usual 101610^{16} GeV.Comment: (32 pages LATEX) [DOE-ER\,40757-022, CPP-93-22] {Small changes made and two references added. This version will appear in Phys. Rev. D

    Selectron Studies at e-e- and e+e- Colliders

    Get PDF
    Selectrons may be studied in both e-e- and e+e- collisions at future linear colliders. Relative to e+e-, the e-e- mode benefits from negligible backgrounds and \beta threshold behavior for identical selectron pair production, but suffers from luminosity degradation and increased initial state radiation and beamstrahlung. We include all of these effects and compare the potential for selectron mass measurements in the two modes. The virtues of the e-e- collider far outweigh its disadvantages. In particular, the selectron mass may be measured to 100 MeV with a total integrated luminosity of 1 fb^-1, while more than 100 fb^-1 is required in e+e- collisions for similar precision.Comment: 16 pages, 11 figure

    SU(16) grandunification: breaking scales, proton decay and neutrino magnetic moment

    Full text link
    We give a detailed renormalization group analysis for the SU(16) grandunified group with general breaking chains in which quarks and leptons transform separately at intermediate energies. Our analysis includes the effects of Higgs bosons. We show that the grandunification scale could be as low as ∌108.5\sim 10^{8.5} GeV and give examples where new physics could exist at relatively low energy (∌250\sim 250 GeV). We consider proton decay in this model and show that it is consistent with a low grandunification scale. We also discuss the possible generation of a neutrino magnetic moment in the range of 10−1110^{-11} to 10−10ÎŒB10^{-10}\mu_B with a very small mass by the breaking of the embedded SU(2)Îœ_\nu symmetry at a low energy.Comment: (16 pages in REVTEX + 6 figures not included) OITS-49

    The anomalous magnetic moment of the muon and radiative lepton decays

    Get PDF
    The leptons are viewed as composite objects, exhibiting anomalous magnetic moments and anomalous flavor-changing transition moments. The decay Ό→eÎł\mu \to e \gamma is expected to occur with a branching ratio of the same order as the present experimental limit.Comment: 5 page
    • 

    corecore