6 research outputs found
combined pik3ca and fgfr inhibition with alpelisib and infigratinib in patients with pik3ca mutant solid tumors with or without fgfr alterations
PURPOSE Concurrent PIK3CA mutations and fibroblast growth factor receptor (FGFR) alterations occur in multiple cancer types, including estrogen receptor–positive breast cancer, bladder cancer, and endometrial cancer. In this first-in-human combination trial, we explored safety and preliminary efficacy of combining the PI3Kα selective inhibitor alpelisib with the FGFR1-4 selective inhibitor infigratinib. PATIENTS AND METHODS Patients with PIK3CA-mutant advanced solid tumors, with or without FGFR1-3 alterations, were enrolled in the dose escalation or one of three molecular-defined dose-expansion cohorts. The primary end point was the maximum tolerated dose. Secondary end points included safety, pharmacokinetics, and response. Archival tumor samples were sequenced to explore genomic correlates of response. RESULTS In combination, both agents were escalated to full, single-agent recommended doses (alpelisib, 300 mg per day continuously; infigratinib, 125 mg per day 3 weeks on followed by 1 week off). The toxicity profile of the combination was consistent with the established safety profile of each agent, although 71% of all patients required at least one treatment interruption or dose reduction. Molecularly selected dose expansions in breast cancer and other solid tumors harboring PIK3CA mutations, alone or in combination with FGFR alterations, identified sporadic responses, predominately in tumor types and genotypes previously defined to have sensitivity to these agents. CONCLUSION The combination of alpelisib and infigratinib can be administered at full single-agent doses, although the high rate of dose interruption or reduction suggests long-term tolerability may be challenging. In exploratory signal-seeking cohorts of patients harboring dual PIK3CA and FGFR1-3 alterations, no clear evidence of synergistic activity was observed
Yeast Screens Identify the RNA Polymerase II CTD and SPT5 as Relevant Targets of BRCA1 Interaction
BRCA1 has been implicated in numerous DNA repair pathways that maintain genome integrity, however the function responsible for its tumor suppressor activity in breast cancer remains obscure. To identify the most highly conserved of the many BRCA1 functions, we screened the evolutionarily distant eukaryote Saccharomyces cerevisiae for mutants that suppressed the G1 checkpoint arrest and lethality induced following heterologous BRCA1 expression. A genome-wide screen in the diploid deletion collection combined with a screen of ionizing radiation sensitive gene deletions identified mutants that permit growth in the presence of BRCA1. These genes delineate a metabolic mRNA pathway that temporally links transcription elongation (SPT4, SPT5, CTK1, DEF1) to nucleopore-mediated mRNA export (ASM4, MLP1, MLP2, NUP2, NUP53, NUP120, NUP133, NUP170, NUP188, POM34) and cytoplasmic mRNA decay at P-bodies (CCR4, DHH1). Strikingly, BRCA1 interacted with the phosphorylated RNA polymerase II (RNAPII) carboxy terminal domain (P-CTD), phosphorylated in the pattern specified by the CTDK-I kinase, to induce DEF1-dependent cleavage and accumulation of a RNAPII fragment containing the P-CTD. Significantly, breast cancer associated BRCT domain defects in BRCA1 that suppressed P-CTD cleavage and lethality in yeast also suppressed the physical interaction of BRCA1 with human SPT5 in breast epithelial cells, thus confirming SPT5 as a relevant target of BRCA1 interaction. Furthermore, enhanced P-CTD cleavage was observed in both yeast and human breast cells following UV-irradiation indicating a conserved eukaryotic damage response. Moreover, P-CTD cleavage in breast epithelial cells was BRCA1-dependent since damage-induced P-CTD cleavage was only observed in the mutant BRCA1 cell line HCC1937 following ectopic expression of wild type BRCA1. Finally, BRCA1, SPT5 and hyperphosphorylated RPB1 form a complex that was rapidly degraded following MMS treatment in wild type but not BRCA1 mutant breast cells. These results extend the mechanistic links between BRCA1 and transcriptional consequences in response to DNA damage and suggest an important role for RNAPII P-CTD cleavage in BRCA1-mediated cancer suppression
CURATION AND MANAGEMENT OF CULTURAL HERITAGE THROUGH LIBRARIES
Libraries, museums and archives hold valuable collections in a variety of media, presenting a vast
body of knowledge rooted in the history of human civilisation. These form the repository of the
wisdom of great works by thinkers of past and the present. The holdings of these institutions are
priceless heritage of the mankind as they preserve documents, ideas, and the oral and written
records. To value the cultural heritage and to care for it as a treasure bequeathed to us by our
ancestors is the major responsibility of libraries. The past records constitute a natural resource
and are indispensable to the present generation as well as to the generations to come. Libraries
preserve the documentary heritage resources for which they are primarily responsible. Any loss of
such materials is simply irreplaceable. Therefore, preserving this intellectual, cultural heritage
becomes not only the academic commitment but also the moral responsibility of the
librarians/information scientists, who are in charge of these repositories.
The high quality of the papers and the discussion represent the thinking and experience of experts
in their particular fields. The contributed papers also relate to the methodology used in libraries
in Asia to provide access to manuscripts and cultural heritage. The volume discusses best practices
in Knowledge preservation and how to collaborate and preserve the culture. The book also deals with
manuscript and archives issues in the digital era.
The approach of this book is concise, comprehensively, covering all major aspects of preservation
and conservation through libraries. The readership of the book is not just limited to library and
information science professionals, but also for those involved in conservation, preservation,
restoration or other related disciplines. The book will be useful for librarians, archivists and
conservators.
We thank the Sunan Kalijaga University, Special Libraries Association- Asian Chapter for their
trust and their constant support, all the contributors for their submissions, the members of the Local
and International Committee for their reviewing effort for making this publication possible
Recommended from our members
Combined PIK3CA and FGFR Inhibition With Alpelisib and Infigratinib in Patients With PIK3CA-Mutant Solid Tumors, With or Without FGFR Alterations
PURPOSE Concurrent PIK3CA mutations and fibroblast growth factor receptor (FGFR) alterations occur in multiple cancer types, including estrogen receptor–positive breast cancer, bladder cancer, and endometrial cancer. In this first-in-human combination trial, we explored safety and preliminary efficacy of combining the PI3Kα selective inhibitor alpelisib with the FGFR1-4 selective inhibitor infigratinib. PATIENTS AND METHODS Patients with PIK3CA-mutant advanced solid tumors, with or without FGFR1-3 alterations, were enrolled in the dose escalation or one of three molecular-defined dose-expansion cohorts. The primary end point was the maximum tolerated dose. Secondary end points included safety, pharmacokinetics, and response. Archival tumor samples were sequenced to explore genomic correlates of response. RESULTS In combination, both agents were escalated to full, single-agent recommended doses (alpelisib, 300 mg per day continuously; infigratinib, 125 mg per day 3 weeks on followed by 1 week off). The toxicity profile of the combination was consistent with the established safety profile of each agent, although 71% of all patients required at least one treatment interruption or dose reduction. Molecularly selected dose expansions in breast cancer and other solid tumors harboring PIK3CA mutations, alone or in combination with FGFR alterations, identified sporadic responses, predominately in tumor types and genotypes previously defined to have sensitivity to these agents. CONCLUSION The combination of alpelisib and infigratinib can be administered at full single-agent doses, although the high rate of dose interruption or reduction suggests long-term tolerability may be challenging. In exploratory signal-seeking cohorts of patients harboring dual PIK3CA and FGFR1-3 alterations, no clear evidence of synergistic activity was observed
Evaluation of BGJ398, a Fibroblast Growth Factor Receptor 1-3 Kinase Inhibitor, in Patients With Advanced Solid Tumors Harboring Genetic Alterations in Fibroblast Growth Factor Receptors: Results of a Global Phase I, Dose-Escalation and Dose-Expansion Study
Purpose This two-part, first-in-human study was initiated in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors (FGFRs) to determine the maximum tolerated dose (MTD), the recommended phase II dose (RP2D), and the schedule, safety, pharmacokinetics, pharmacodynamics, and antitumor activity of oral BGJ398, a selective FGFR1-3 tyrosine kinase inhibitor. Patients and Methods Adult patients were treated with escalating dosages of BGJ398 5 to 150 mg once daily or 50 mg twice daily continuously in 28-day cycles. During expansion at the MTD, patients with FGFR1-amplified squamous cell non-small-cell lung cancer (sqNSCLC; arm 1) or other solid tumors with FGFR genetic alterations (mutations/amplifications/fusions) received BGJ398 daily on a continuous schedule (arm 2), or on a 3-weeks-on/1-week-off schedule (arm 3). Results Data in 132 patients from the escalation and expansion arms are reported (May 15, 2015, cutoff). The MTD, 125 mg daily, was determined on the basis of dose-limiting toxicities in four patients (100 mg, grade 3 aminotransferase elevations [n = 1]; 125 mg, hyperphosphatemia [n = 1]; 150 mg, grade 1 corneal toxicity [n = 1] and grade 3 aminotransferase elevations [n = 1]). Common adverse events in patients treated at the MTD (n = 57) included hyperphosphatemia (82.5%), constipation (50.9%), decreased appetite (45.6%), and stomatitis (45.6%). A similar safety profile was observed using the 3-weeks-on/1-week-off schedule (RP2D). However, adverse event-related dose adjustments/interruptions were less frequent with the 3-weeks-on/1-week-off (50.0%) versus the continuous (73.7%) schedule. Antitumor activity (seven partial responses [six confirmed]) was demonstrated with BGJ398 doses ≥ 100 mg in patients with FGFR1-amplified sqNSCLC and FGFR3-mutant bladder/urothelial cancer. Conclusion BGJ398 at the MTD/RP2D had a tolerable and manageable safety profile and showed antitumor activity in several tumor types, including FGFR1-amplified sqNSCLC and FGFR3-mutant bladder/urothelial cancers