34 research outputs found

    ENHANCED p53-DEPENDENT GROWTH INHIBITION OF HUMAN GLIOBLASTOMA CELLS BY COMBINATORIAL TREATMENT OF TEMOZOLOMIDE AND NOVEL PURIFIED NATURAL CARBOHYDRATE OF PLEUROTUS FLORIDA

    Get PDF
    Objective: This study was designed to analyze the combinatorial chemotherapeutic effect of temozolomide (TMZ), the most common drug in glioblastoma treatment and a purified carbohydrate (Fr-II) from the edible mushroom Pleurotus florida, on human glioblastoma cell lines.Methods: Fr-II was purified by size-exclusion chromatography and characterised by different mass spectroscopy analysis. Human glioblastoma cells were treated with TMZ, Fr-II, and combination of TMZ and Fr-II. Cell cytotoxicity was measured by MTT assay, cell cycle phase distribution was determined by cell cycle analysis and followed by the relative p53 protein expression was analyzed by western blot analysis.Results: Chemical analysis of Fr-II confirmed the glycosidically linked two units of glucose with terminally attached mannitol with mass of 506 Da. Fr-II treatment exhibited cytotoxicity in both the cell lines in a dose-dependent manner with most effective dose at 200µg/ml. When Fr-II (200µg/ml) was combined with a dose range of TMZ it showed a more cellular cytotoxicity compared to the cytotoxicity of TMZ alone with most oppressive combinatorial dose at 400µM (TMZ)+200µg/ml (Fr-II). In compliance, with the above results, both cell lines showed a 10% increase in no. of cells (p<0.05) in G2/M phase indicating an arrest of cell cycle and increased p53 protein expression (p<0.05) at the combinatorial dose than TMZ alone at 400µM, but Fr-II alone didn't show any cell cycle arrest nor did it show increased p53 expression.Conclusion: Therefore it confirms that Fr-II synergizes with TMZ to significantly intensify its anti-proliferative properties, thereby emerging as an effective element for combinatorial treatment of glioblastoma

    Structural characterization of the <i style="">O</i>-antigenic polysaccharide from the lipopolysaccharide of <i style="">Vibrio</i> <i style="">cholerae</i> <i style="">O</i>37

    No full text
    729-734 The chemical structure of the O-antigenic polysaccharide isolated from the lipopolysaccharide of Vibrio cholerae O37 by mild acid hydrolysis was elucidated. The O-antigenic polysac­charide is found to consist of D-glucose, N-acetyl-D-Quinovos­amine and small amount of 4-O-methyl-N-acetyl-D-quinovas­amine. The structure of the O-antigen is established by using sugar and methylation analyses, Smith degradation studies and by using GLC, GC-MS, FAB-MS, one dimensional 1H and 13C NMR spectroscopy and two dimensional NMR spectroscopy including COSY, TOCSY, HSQC, experiments. </smarttagtype

    Roles of 3-Deoxy-d-manno-2-Octulosonic Acid Transferase from Moraxella catarrhalis in Lipooligosaccharide Biosynthesis and Virulence

    No full text
    Lipooligosaccharide (LOS), a major outer membrane component of Moraxella catarrhalis, is a possible virulence factor in the pathogenesis of human infections caused by the organism. However, information about the roles of the oligosaccharide chain from LOS in bacterial infection remains limited. Here, a kdtA gene encoding 3-deoxy-d-manno-2-octulosonic acid (Kdo) transferase, which is responsible for adding Kdo residues to the lipid A portion of the LOS, was identified by transposon mutagenesis and construction of an isogenic kdtA mutant in strain O35E. The resulting O35EkdtA mutant produced only lipid A without any core oligosaccharide, and it was viable. Physicochemical and biological analysis revealed that the mutant was susceptible to hydrophobic reagents and a hydrophilic glycopeptide and was sensitive to bactericidal activity of normal human serum. Importantly, the mutant showed decreased toxicity by the Limulus amebocyte lysate assay, reduced adherence to human epithelial cells, and enhanced clearance in lungs and nasopharynx in a mouse aerosol challenge model. These data suggest that the oligosaccharide moiety of the LOS is important for the biological activity of the LOS and the virulence capability of the bacteria in vitro and in vivo. This study may bring new insights into novel vaccines or therapeutic interventions against M. catarrhalis infections

    Sialylation Facilitates the Maturation of Mammalian Sperm and Affects Its Survival in Female Uterus.

    No full text
    Establishment of adequate levels of sialylation is crucial for sperm survival and function after insemination; however, the mechanism for the addition of the sperm sialome has not been identified. Here, we report evidence for several different mechanisms that contribute to the establishment of the mature sperm sialome. Directly quantifying the source of the nucleotide sugar CMP-beta-N-acetylneuraminic acid in epididymal fluid indicates that transsialylation occurs in the upper epididymis. Western blots for the low-molecular-mass sialoglycoprotein (around 20-50 kDa) in C57BL/6 mice epididymal fluid reflect that additional sialome could be obtained by glycosylphosphatidylinositol-anchored sialoglycopeptide incorporation during epididymal transit in the caput of the epididymis. Additionally, we found that in Cmah (CMP-N-acetylneuraminic acid hydroxylase)-/- transgenic mice, epididymal sperm obtained sialylated-CD52 from seminal vesicle fluid (SVF). Finally, we used Gfp (green fluorescent protein)+/+ mouse sperm to test the role of sialylation on sperm for protection from female leukocyte attack. There is very low phagocytosis of the epididymal sperm when compared to that of sperm coincubated with SVF. Treating sperm with Arthrobacter ureafaciens sialidase (AUS) increased phagocytosis even further. Our results highlight the different mechanisms of increasing sialylation, which lead to the formation of the mature sperm sialome, as well as reveal the sialome's function in sperm survival within the female genital tract
    corecore