89 research outputs found

    Mitral valve replacement with the pulmonary autograft: The Ross II procedure

    Get PDF
    AbstractJ Thorac Cardiovasc Surg 2001;122:378-

    Single-stage versus 2-stage repair of coarctation of the aorta with ventricular septal defect

    Get PDF

    Biologically synthesized silver nanoparticles eclipse fungal and bacterial contamination in micropropagation of Capparis decidua (FORSK.) Edgew: A substitute to toxic substances

    Get PDF
    336-343Microbial contamination is a serious challenge in plant tissue culture, particularly in micropropagation of threatened and rare medicinally important plants for conservation purpose. Use of antibiotics exhibit harmful effects on plants, and continuous use makes bacteria more resistant. Also, chemicals used to control such contaminations are either toxic to the explant or have limited efficiency. Though nanobiotechnology offers an effective alternate to deal with the bacterial and fungal contamination, chemical synthesis of metal nanoparticles has limitations and found to be toxic, flammable and hard to get disposed. Green synthesis of silver nanoparticles (AgNPs) employing plant extracts, being environment friendly, cost-effective, and single step, is gaining attention as better alternative method. In this study, the green synthesised silver nanoparticles were confirmed by UV-Vis spectroscopy (462.73 nm, 0.473 Abs) and Transmission Electron microscopy (TEM). The fruit extract of Capparis decidua served as an environmentally benign reducing agent and the phytochemicals of the extract as non-toxic agent to stabilize the AgNP (FTIR) upholding its significance as an eco-friendly approach compared to hazardous chemicals. The nano size (1.5-15 nm) makes the green synthesized AgNPs a better antimicrobial agent allowing easy diffusion into the cells. Evaluation of decontamination as well as the survival rate of the explants was monitored using the explants (shoot tip and nodal segment) immersion in three different concentrations of AgNP solution (100, 300, and 500 mg/L) and controlled by 0.1% mercuric chloride treatment demonstrating promising decrease in decontamination. However, the survival was expedient excluding immersion in 100 mg/L for 20 or 30 min. The MS media supplementation by AgNP solution (50, 100, 300 and 500 mg/L), controlled by 70% ethanol treatment divulged the superior decontamination rate at 150 mg/L of AgNPs (90.2% for bacteria and 94.4% for fungal contamination) with 80.5% survival. The increased concentration gave 100% bacterial and 98.6% fungal decontamination but a reduced survival percent (68.5%). This work potentially showed that nanosized AgNPs could serve as an appropriate antimicrobial substitute to chemicals being innocuous to the explant regeneration

    Assessment of Malnutrition in Pre-School children visiting immunization clinic, Maharana Bhoopal Hospital, Udaipur (Rajasthan)

    Get PDF
    Background: The pre-school age groups (2-5years) were evaluated for growth and nutritional status at immunization clinic at Maharana Bhoopal hospital, Udaipur. Objectives: To study the malnutrition in pre-school children. Material & Methods: The cross sectional study had been carried out between august 2013 to November 2013 with 1080children at immunization clinic Maharana Bhoopal Hospital Udaipur. Body weight, height were recorded including with age, gender and also education and occupation and socio-economic status of mother by interviewing the mother at the time they attended the immunization clinic and by the help of MAMTA CARD. Result: The age and sex distribution of 1080 examined children revealed that 52.8% were males while 47.2% were females. The malnutrition in the subjects was determined as per World Health Organization child growth standards [1]. Data reveals that 4.2% of male children, 4.1% of female children were severely stunted and 10.7% of male children, 11.2% of female children were stunted. Whereas 3.1% of male children, 4.7% of female children were found to be severely wasted and 11.4% of male children, 12.3% of female children were wasted. Also found that 7.5% of male children, 7.6% of female children were overweight and 1.9% of male children, 1.0% of female children were obese. Conclusion: There is need of more education about nutrition and dietary habits to population including proper antenatal and postnatal care of mother to decrease the prevalence of malnutrition in children

    Internal Flow Choking in Cardiovascular System: A Radical Theory in the Risk Assessment of Asymptomatic Cardiovascular Diseases

    Get PDF
    The theoretical discovery of Sanal flow choking in the cardiovascular system (CVS) demands for interdisciplinary studies and universal actions to propose modern medications and to discover new drugs to annul the risk of flow-choking leading to shock-wave generation causing asymptomatic-cardiovascular-diseases. In this chapter we show that when blood-pressure-ratio (BPR) reaches the lower-critical-hemorrhage-index (LCHI) the flow-choking could occur in the CVS with and without stent. The flow-choking is uniquely regulated by the biofluid/blood-heat-capacity-ratio (BHCR). The BHCR is well correlated with BPR, blood-viscosity and ejection-fraction. The closed-form analytical models reveal that the relatively high and the low blood-viscosity are cardiovascular-risk factors. In vitro data shows that nitrogen, oxygen, and carbon dioxide gases are predominant in fresh blood samples of the human being/Guinea-pig at a temperature range of 37–40 °C (98.6–104 °F). In silico results demonstrate the occurrence of Sanal flow choking leading to shock wave generation and pressure-overshoot in CVS without any apparent occlusion. We could conclude authoritatively, without any ex vivo or in vivo studies, that the Sanal flow choking in CVS leads to asymptomatic-cardiovascular-diseases. The cardiovascular-risk could be diminished by concurrently lessening the viscosity of biofluid/blood and flow-turbulence by increasing the thermal-tolerance level in terms of BHCR and/or by decreasing the BPR

    Sensor-based precision nutrient and irrigation management enhances the physiological performance, water productivity, and yield of soybean under system of crop intensification

    Get PDF
    Sensor-based decision tools provide a quick assessment of nutritional and physiological health status of crop, thereby enhancing the crop productivity. Therefore, a 2-year field study was undertaken with precision nutrient and irrigation management under system of crop intensification (SCI) to understand the applicability of sensor-based decision tools in improving the physiological performance, water productivity, and seed yield of soybean crop. The experiment consisted of three irrigation regimes [I1: standard flood irrigation at 50% depletion of available soil moisture (DASM) (FI), I2: sprinkler irrigation at 80% ETC (crop evapo-transpiration) (Spr 80% ETC), and I3: sprinkler irrigation at 60% ETC (Spr 60% ETC)] assigned in main plots, with five precision nutrient management (PNM) practices{PNM1-[SCI protocol], PNM2-[RDF, recommended dose of fertilizer: basal dose incorporated (50% N, full dose of P and K)], PNM3-[RDF: basal dose point placement (BDP) (50% N, full dose of P and K)], PNM4-[75% RDF: BDP (50% N, full dose of P and K)] and PNM5-[50% RDF: BDP (50% N, full P and K)]} assigned in sub-plots using a split-plot design with three replications. The remaining 50% N was top-dressed through SPAD assistance for all the PNM practices. Results showed that the adoption of Spr 80% ETC resulted in an increment of 25.6%, 17.6%, 35.4%, and 17.5% in net-photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), and intercellular CO2 concentration (Ci), respectively, over FI. Among PNM plots, adoption of PNM3 resulted in a significant (p=0.05) improvement in photosynthetic characters like Pn (15.69 µ mol CO2 m−2 s−1), Tr (7.03 m mol H2O m−2 s−1), Gs (0.175 µmol CO2 mol−1 year−1), and Ci (271.7 mol H2O m2 s−1). Enhancement in SPAD (27% and 30%) and normalized difference vegetation index (NDVI) (42% and 52%) values were observed with nitrogen (N) top dressing through SPAD-guided nutrient management, helped enhance crop growth indices, coupled with better dry matter partitioning and interception of sunlight. Canopy temperature depression (CTD) in soybean reduced by 3.09–4.66°C due to adoption of sprinkler irrigation. Likewise, Spr 60% ETc recorded highest irrigation water productivity (1.08 kg ha−1 m−3). However, economic water productivity (27.5 INR ha−1 m−3) and water-use efficiency (7.6 kg ha−1 mm−1 day−1) of soybean got enhanced under Spr 80% ETc over conventional cultivation. Multiple correlation and PCA showed a positive correlation between physiological, growth, and yield parameters of soybean. Concurrently, the adoption of Spr 80% ETC with PNM3 recorded significantly higher grain yield (2.63 t ha−1) and biological yield (8.37 t ha−1) over other combinations. Thus, the performance of SCI protocols under sprinkler irrigation was found to be superior over conventional practices. Hence, integrating SCI with sensor-based precision nutrient and irrigation management could be a viable option for enhancing the crop productivity and enhance the resource-use efficiency in soybean under similar agro-ecological regions

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Tuberculous aneurysms of the aorta

    Get PDF
    corecore