203 research outputs found

    Phase Behavior of Polyelectrolyte Block Copolymers in Mixed Solvents

    Full text link
    We have studied the phase behavior of the poly(n-butyl acrylate)-b-poly(acrylic acid) block copolymer in a mixture of two miscible solvents, water and tetrahydrofuran (THF). The techniques used to examine the different polymers, structures and phases formed in mixed solvents were static and dynamic light scattering, small-angle neutron scattering, nuclear magnetic resonance and fluorescence microscopy. By lowering the water/THF mixing ratio X, the sequence unimers, micron-sized droplets, polymeric micelles was observed. The transition between unimers and the micron-sized droplets occurred at X = 0.75, whereas the microstructuration into core-shell polymeric micelles was effective below X = 0.4. At intermediate mixing ratios, a coexistence between the micron-sized droplets and the polymeric micelles was observed. Combining the different aforementioned techniques, it was concluded that the droplet dispersion resulted from a solvent partitioning that was induced by the hydrophobic blocks. Comparison of poly(n-butyl acrylate) homopolymers and poly(n-butyl acrylate)-b-poly(acrylic acid) block copolymers suggested that the droplets were rich in THF and concentrated in copolymers and that they were stabilized by the hydrophilic poly(acrylic acid) moieties.Comment: 11 pages, 12 figures, to appear in Macromolecule

    Graphene Photonics and Optoelectronics

    Full text link
    The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential to be in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultra-wide-band tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light emitting devices, to touch screens, photodetectors and ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres

    Coherent Random Lasing Realized in Polymer Vesicles

    Get PDF
    We have demonstrated the realization of a coherent vesicle random lasing (VRL) from the dye doped azobenzene polymer vesicles self-assembled in the tetrahydrofuran-water system, which contains a double-walled structure: a hydrophilic and hydrophobic part. The effect of the dye and azobenzene polymer concentration on the threshold of random laser has been researched. The threshold of random laser decreases with an increase in the concentration of the pyrromethene 597 (PM597) laser and azobenzene polymer. Moreover, the scattering of small size group vesicles is attributed to providing a loop to boost the coherent random laser through the Fourier transform analysis. Due to the vesicles having the similar structure with the cell, the generation of coherent random lasers from vesicles expand random lasers to the biomedicine filed

    Complementary light scattering and synchrotron small-angle X-ray scattering studies of the micelle-to-unimer transition of polysulfobetaines

    Get PDF
    YesAB and ABA di- and triblock copolymers where A is the hydrophilic poly(oligoethylene glycol methacrylate) (POEGMA) block and B is a thermo-responsive sulfobetaine block [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (PDMAPS) were synthesised by aqueous RAFT polymerisation with narrow dispersity (ĐM ≤ 1.22), as judged by aqueous SEC analysis. The di- and triblock copolymers self-assembled in salt-free water to form micelles with a PDMAPS core and the self-assembly of these polymers was explored by SLS and TEM analysis. The micelles were shown, by DLS analysis, to undergo a micelle-to-unimer transition at a critical temperature, which was dependent upon the length of the POEGMA block. Increasing the length of the third, POEGMA, block decreased the temperature at which the micelle-to-unimer transition occurred as a result of the increased hydrophilicity of the polymer. The dissociation of the micelles was further studied by SLS and synchrotron SAXS. SAXS analysis revealed that the micelle dissociation began at temperatures below that indicated by DLS analysis and that both micelles and unimers coexist. This highlights the importance of using multiple complementary techniques in the analysis of self-assembled structures. In addition the micelle-to-unimer morphology transition was employed to encapsulate and release a hydrophobic dye, Nile Red, as shown by fluorescence spectroscopy.Engineering and Physical Sciences Research Council (EPSRC), University of Warwic

    Post-graduation migration intentions of students of Lebanese medical schools: a survey study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The international migration of physicians is a global public health problem. Lebanon is a source country with the highest emigration factor in the Middle East and North Africa and the 7th highest in the World. Given that residency training abroad is a critical step in the migration of physicians, the objective of this study was to survey students of Lebanese medical schools about their intentions to train abroad and their post training plans.</p> <p>Methods</p> <p>Our target population consisted of all students of Lebanese medical schools in the pre-final and final years of medical school. We developed the survey questionnaire based on the results of a qualitative study assessing the intentions and motives for students of Lebanese medical schools to train abroad. The questionnaire inquired about student's demographic and educational characteristics, intention to train abroad, the chosen country of abroad training, and post-training intention of returning to Lebanon.</p> <p>Results</p> <p>Of 576 eligible students, 425 participated (73.8% response rate). 406 (95.5%) respondents intended to travel abroad either for specialty training (330 (77.6%)) or subspecialty training (76 (17.9%)). Intention to train abroad was associated with being single compared with being married. The top 4 destination countries were the US (301(74.1%)), France (49 (12.1%)), the United Kingdom (31 (7.6%)) and Canada (17 (4.2%)). One hundred and two (25.1%) respondents intended to return to Lebanon directly after finishing training abroad; 259 (63.8%) intended to return to Lebanon after working abroad temporarily for a varying number or years; 43 (10.6%) intended to never return to Lebanon. The intention to stay indefinitely abroad was associated male sex and having a 2<sup>nd </sup>citizenship. It was inversely associated with being a student of one of the French affiliated medical schools and a plan to train in a surgical specialty.</p> <p>Conclusion</p> <p>An alarming percentage of students of Lebanese medical schools intend to migrate for post graduate training, mainly to the US. A minority intends to return directly to Lebanon after finishing training abroad.</p

    Metastatic epidural spinal cord compression: current concepts and treatment

    Full text link
    Metastatic epidural spinal cord compression (MESCC) is a medical emergency complicating the course of 5–10% of patients with cancer [1]. When diagnosis and treatment is early with the patient ambulatory prognosis for continued ambulation is good [2]. If the patient is nonambulatory or paraplegic, prognosis for meaningful recovery of motor and bladder function is markedly decreased. In the last decade, significant advances in the understanding, management and treatment of metastatic epidural spinal cord compression have occurred.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45378/1/11060_2005_Article_BF01051052.pd
    corecore