23 research outputs found

    Flavor Symmetry L_mu - L_tau and quasi-degenerate Neutrinos

    Full text link
    Current data implies three simple forms of the neutrino mass matrix, each corresponding to the conservation of a non-standard lepton charge. While models based on L_e and L_e - L_mu - L_tau are well-known, little attention has been paid to L_mu - L_tau. A low energy mass matrix conserving L_mu - L_tau implies quasi-degenerate light neutrinos. Moreover, it is mu-tau symmetric and therefore (in contrast to L_e and L_e - L_mu - L_tau) automatically predicts maximal atmospheric neutrino mixing and zero U_{e3}. A see-saw model based on L_mu - L_tau is investigated and testable predictions for the neutrino mixing observables are given. Renormalization group running below and in between the see-saw scales is taken into account in our analysis, both numerically and analytically.Comment: 15 pages, 2 figures. Prepared for 5th International Conference on Nonaccelerator New Physics (NANP 05), Dubna, Russia, 20-25 Jun 200

    MiniBooNE Results and Neutrino Schemes with 2 sterile Neutrinos: Possible Mass Orderings and Observables related to Neutrino Masses

    Get PDF
    The MiniBooNE and LSND experiments are compatible with each other when two sterile neutrinos are added to the three active ones. In this case there are eight possible mass orderings. In two of them both sterile neutrinos are heavier than the three active ones. In the next two scenarios both sterile neutrinos are lighter than the three active ones. The remaining four scenarios have one sterile neutrino heavier and another lighter than the three active ones. We analyze all scenarios with respect to their predictions for mass-related observables. These are the sum of neutrino masses as constrained by cosmological observations, the kinematic mass parameter as measurable in the KATRIN experiment, and the effective mass governing neutrinoless double beta decay. It is investigated how these non-oscillation probes can distinguish between the eight scenarios. Six of the eight possible mass orderings predict positive signals in the KATRIN and future neutrinoless double beta decay experiments. We also remark on scenarios with three sterile neutrinos. In addition we make some comments on the possibility of using decays of high energy astrophysical neutrinos to discriminate between the mass orderings in presence of two sterile neutrinos.Comment: 33 pages, 8 figures. Comments added, to appear in JHE

    Lowering solar mixing angle in inverted hierarchy without charged lepton corrections

    Full text link
    In the present work, the inverted hierarchical neutrino mass model which is characterised by opposite CP parity in the first two mass eigenvalues (m1,−m2,m3)(m_1,-m_2,m_3), is studied in order to lower the predicted value of solar mixing angle tan⁡2ξ12\tan^2\theta_{12}, from the tri-bimaximal mixing (TBM), without sacrificing the conditions of maximal atmospheric mixing angle and zero reactor angle. The present attempt is different from the earlier approach where the correction from the charged lepton mass matrix is included in the leptonic mixing matrix to lower the prediction on solar mixing angle. The lowering of the solar mixing angle without charged lepton correction, can be obtained through the variation of the input value of a flavour twister term present in the texture of neutrino mass matrix having a 2-3 symmetry. The present analysis agrees with the latest experimental bounds on neutrino mass parameters and also represents an important result on the survival of the inverted hierarchical neutrino mass models having opposite CP parity in the first two eigenvalues.Comment: 10 pages, two figures. Accepted for publication in Journal of Physics G:Nuclear and Particle Physic

    Leptonic CP Violation and Neutrino Mass Models

    Full text link
    We discuss leptonic mixing and CP violation at low and high energies, emphasizing possible connections between leptogenesis and CP violation at low energies, in the context of lepton flavour models. Furthermore we analyse weak basis invariants relevant for leptogenesis and for CP violation at low energies. These invariants have the advantage of providing a simple test of the CP properties of any lepton flavour model.Comment: 26 pages, no figures, submitted to the Focus Issue on `Neutrino Physics` edited by F. Halzen, M. Lindner and A. Suzuki, to be published in New Journal of Physic

    Neutrino Mixing and Neutrino Telescopes

    Get PDF
    Measuring flux ratios of ultra-high energy neutrinos is an alternative method to determine the neutrino mixing angles and the CP phase delta. We conduct a systematic analysis of the neutrino mixing probabilities and of various flux ratios measurable at neutrino telescopes. The considered cases are neutrinos from pion, neutron and muon-damped sources. Explicit formulae in case of mu-tau symmetry and its special case tri-bimaximal mixing are obtained, and the leading corrections due to non-zero theta_{13} and non-maximal theta_{23} are given. The first order correction is universal as it appears in basically all ratios. We study in detail its dependence on theta_{13}, theta_{23} and the CP phase, finding that the dependence on theta_{23} is strongest. The flavor compositions for the considered neutrino sources are evaluated in terms of this correction. A measurement of a flux ratio is a clean measurement of the universal correction (and therefore of theta_{13}, theta_{23} and delta) if the zeroth order ratio does not depend on theta_{12}. This favors pion sources over the other cases, which in turn are good candidates to probe theta_{12}. The only situations in which the universal correction does not appear are certain ratios in case of a neutron and muon-damped source, which depend mainly on theta_{12} and receive only quadratic corrections from the other parameters. We further show that there are only two independent neutrino oscillation probabilities, give the allowed ranges of the considered flux ratios and of all probabilities, and show that none of the latter can be zero or one.Comment: 29 pages, 8 figures. Minor changes, to appear in JCA

    Neutrinoless double-beta decay and physics beyond the standard model

    Get PDF
    Neutrinoless double-beta decay is the most powerful tool to probe not only for Majorana neutrino masses but for lepton number violating physics in general. We discuss relations between lepton number violation, double-beta decay and neutrino mass, review a general Lorentz-invariant parametrization of the double-beta decay rate, highlight a number of different new physics models showing how different mechanisms can trigger double-beta decay and, finally, discuss possibilities of discriminating and testing these models and mechanisms in complementary experiments

    Discriminating neutrino mass models using Type II seesaw formula

    Full text link
    In this paper we propose a kind of natural selection which can discriminate the three possible neutrino mass models, namely the degenerate, inverted hierarchical and normal hierarchical models, using the framework of Type II seesaw formula. We arrive at a conclusion that the inverted hierarchical model appears to be most favourable whereas the normal hierarchical model follows next to it. The degenerate model is found to be most unfavourable. We use the hypothesis that those neutrino mass models in which Type I seesaw term dominates over the Type II left-handed Higgs triplet term are favoured to survive in nature.Comment: No change in the results, a few references added, some changes in Type[IIB] calculation

    The mu - e Conversion in Nuclei, mu --> e gamma, mu --> 3e Decays and TeV Scale See-Saw Scenarios of Neutrino Mass Generation

    Get PDF
    We perform a detailed analysis of lepton flavour violation (LFV) within minimal see-saw type extensions of the Standard Model (SM), which give a viable mechanism of neutrino mass generation and provide new particle content at the electroweak scale. We focus, mainly, on predictions and constraints set on each scenario from mu --> e gamma, mu --> 3e and mu - e conversion in the nuclei. In this class of models, the flavour structure of the Yukawa couplings between the additional scalar and fermion representations and the SM leptons is highly constrained by neutrino oscillation measurements. In particular, we show that in some regions of the parameters space of type I and type II see-saw models, the Dirac and Majorana phases of the neutrino mixing matrix, the ordering and hierarchy of the active neutrino mass spectrum as well as the value of the reactor mixing angle theta_{13} may considerably affect the size of the LFV observables. The interplay of the latter clearly allows to discriminate among the different low energy see-saw possibilities.Comment: Expressions for the factors |C_{me}|^2 and |C_{mu3e}|^2 in the mu-e conversion and mu-->3e decay rates, eqs. (36) and (49), respectively, corrected; results in subsections 2.2 and 2.3 quantitatively changed, qualitatively remain the same; figures 2, 3, 4 and 5 replace

    Lepton Number and Lepton Flavor Violation through Color Octet States

    Full text link
    We discuss neutrinoless double beta decay and lepton flavor violating decays such as Ό−>eÎł\mu-> e\gamma in the colored seesaw scenario. In this mechanism, neutrino masses are generated at one-loop via the exchange of TeV-scale fermionic and scalar color octets. The same particles mediate lepton number and flavor violating processes. We show that within this framework a dominant color octet contribution to neutrinoless double beta decay is possible without being in conflict with constraints from lepton flavor violating processes. We furthermore compare the "direct" color octet contribution to neutrinoless double beta decay with the "indirect" contribution, namely the usual standard light Majorana neutrino exchange. For degenerate color octet fermionic states both contributions are proportional to the usual effective mass, while for non-degenerate octet fermions this feature is not present. Depending on the model parameters, either of the contributions can be dominant.Comment: 17 pages, 16 figure
    corecore