3,818 research outputs found

    A novel phase-aligned analysis on motion patterns of table tennis strokes

    Get PDF
    © 2016, Routledge. All rights reserved. A wide range of human motion represent repetitive patterns particularly in racket sports. Quantitative analysis of the continuous variables during the different phases of the motion cycle helps to investigate more deeply the specific movement of the racket or player. Table tennis biomechanics research to date lacks the necessary detail of phase decomposition and phase-based quantitative analysis. Therefore, this study proposes a novel velocity-based piecewise alignment method to identify the different phases of a table tennis forehand stroke. A controlled experiment was conducted on a number of players of two differing ability levels (experts vs. novices) to implement this novel methodology. Detailed results are shown for the quantitative analysis on multiple strokes of the two groups of participants. Significant differences were found in both the displacement and velocity of the racket movement in the backswing, forward swing and follow-through phases. For example, it is clear that experts’ strokes show higher racket resultant velocity than novices during both the forward swing and follow-through phases by up to a factor of two. Furthermore, the phase-based approach to analysing racket motions leads to interrogation over a greater duration than the traditional time-based method which is generally only concerned with impact ±0.25s

    Shoulder joint angle errors caused by marker offset

    Get PDF
    Crown Copyright © 2015 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. The International Society of Biomechanics (ISB) has recommended a standardization of the definition of the joint coordinate system (JCS) and use of a sequential rotation to describe human shoulder joint rotation. Markers attached to the surface of the body may move during the process of motion data capture, resulting in an offset from their initial location. This leads to a change of the JCS and therefore affects the calculated shoulder joint angles. In this research study, we presented a simple marker offset model to quantify the shoulder joint errors for both static poses and dynamic activities. Specific conditions of different offsets and elbow flexion angles were studied. Results showed that the errors should not be neglected when the shoulder elevation angle was near -90° and 90°, or elbow flexion was very small. Attention should be paid to these errors for such activities especially walking and throwing

    Assessing pathological changes within the nucleus ambiguus of horses with Recurrent Laryngeal Neuropathy: an extreme, length-dependent axonopathy

    Get PDF
    Equine recurrent laryngeal neuropathy (RLN) is a naturally occurring model of length‐dependent axonopathy characterised by asymmetrical degeneration of recurrent laryngeal nerve axons (RLn). Distal RLn degeneration is marked, however it is unclear whether degeneration extends to include cell bodies (consistent with a neuronopathy). With examiners blinded to RLN severity, brainstem location and side, we examined correlations between RLN severity (assessed using left distal RLn myelinated axon count) and histopathological features (including chromatolysis and glial responses) in the nucleus ambiguus cell bodies, and myelinated axon count of the right distal RLn of 16 horses

    ELECTROCHEMICAL STUDIES ON MO - FE PROTEIN

    Get PDF
    The midpoint potentials and n values of Mo - Fe protein of azotobacter vinelandii ( Avl ) were determined by the coulometry at fixed potentials . The oxidation - reduction states of the Mo-Fe protein were discussed.The oxidation-reduction states of the Mo-Fe protein by the carrier ( methyl viologen ) is studied

    Experimental demonstration of a BDCZ quantum repeater node

    Full text link
    Quantum communication is a method that offers efficient and secure ways for the exchange of information in a network. Large-scale quantum communication (of the order of 100 km) has been achieved; however, serious problems occur beyond this distance scale, mainly due to inevitable photon loss in the transmission channel. Quantum communication eventually fails when the probability of a dark count in the photon detectors becomes comparable to the probability that a photon is correctly detected. To overcome this problem, Briegel, D\"{u}r, Cirac and Zoller (BDCZ) introduced the concept of quantum repeaters, combining entanglement swapping and quantum memory to efficiently extend the achievable distances. Although entanglement swapping has been experimentally demonstrated, the implementation of BDCZ quantum repeaters has proved challenging owing to the difficulty of integrating a quantum memory. Here we realize entanglement swapping with storage and retrieval of light, a building block of the BDCZ quantum repeater. We follow a scheme that incorporates the strategy of BDCZ with atomic quantum memories. Two atomic ensembles, each originally entangled with a single emitted photon, are projected into an entangled state by performing a joint Bell state measurement on the two single photons after they have passed through a 300-m fibre-based communication channel. The entanglement is stored in the atomic ensembles and later verified by converting the atomic excitations into photons. Our method is intrinsically phase insensitive and establishes the essential element needed to realize quantum repeaters with stationary atomic qubits as quantum memories and flying photonic qubits as quantum messengers.Comment: 5 pages, 4 figure

    Thermodynamics of Competitive Molecular Channel Transport: Application to Artificial Nuclear Pores

    Get PDF
    In an analytical model channel transport is analyzed as a function of key parameters, determining efficiency and selectivity of particle transport in a competitive molecular environment. These key parameters are the concentration of particles, solvent-channel exchange dynamics, as well as particle-in-channel- and interparticle interaction. These parameters are explicitly related to translocation dynamics and channel occupation probability. Slowing down the exchange dynamics at the channel ends, or elevating the particle concentration reduces the in-channel binding strength necessary to maintain maximum transport. Optimized in-channel interaction may even shift from binding to repulsion. A simple equation gives the interrelation of access dynamics and concentration at this transition point. The model is readily transferred to competitive transport of different species, each of them having their individual in-channel affinity. Combinations of channel affinities are determined which differentially favor selectivity of certain species on the cost of others. Selectivity for a species increases if its in-channel binding enhances the species' translocation probablity when compared to that of the other species. Selectivity increases particularly for a wide binding site, long channels, and fast access dynamics. Recent experiments on competitive transport of in-channel binding and inert molecules through artificial nuclear pores serve as a paradigm for our model. It explains qualitatively and quantitatively how binding molecules are favored for transport at the cost of the transport of inert molecules

    Impact of Investor's Varying Risk Aversion on the Dynamics of Asset Price Fluctuations

    Full text link
    While the investors' responses to price changes and their price forecasts are well accepted major factors contributing to large price fluctuations in financial markets, our study shows that investors' heterogeneous and dynamic risk aversion (DRA) preferences may play a more critical role in the dynamics of asset price fluctuations. We propose and study a model of an artificial stock market consisting of heterogeneous agents with DRA, and we find that DRA is the main driving force for excess price fluctuations and the associated volatility clustering. We employ a popular power utility function, U(c,γ)=c1γ11γU(c,\gamma)=\frac{c^{1-\gamma}-1}{1-\gamma} with agent specific and time-dependent risk aversion index, γi(t)\gamma_i(t), and we derive an approximate formula for the demand function and aggregate price setting equation. The dynamics of each agent's risk aversion index, γi(t)\gamma_i(t) (i=1,2,...,N), is modeled by a bounded random walk with a constant variance δ2\delta^2. We show numerically that our model reproduces most of the ``stylized'' facts observed in the real data, suggesting that dynamic risk aversion is a key mechanism for the emergence of these stylized facts.Comment: 17 pages, 7 figure

    Feasibility of the STarT back screening tool in chiropractic clinics: a cross-sectional study of patients with low back pain

    Get PDF
    The STarT back screening tool (SBT) allocates low back pain (LBP) patients into three risk groups and is intended to assist clinicians in their decisions about choice of treatment. The tool consists of domains from larger questionnaires that previously have been shown to be predictive of non-recovery from LBP. This study was performed to describe the distribution of depression, fear avoidance and catastrophising in relation to the SBT risk groups. A total of 475 primary care patients were included from 19 chiropractic clinics. They completed the SBT, the Major Depression Inventory (MDI), the Fear Avoidance Beliefs Questionnaire (FABQ), and the Coping Strategies Questionnaire. Associations between the continuous scores of the psychological questionnaires and the SBT were tested by means of linear regression, and the diagnostic performance of the SBT in relation to the other questionnaires was described in terms of sensitivity, specificity and likelihood ratios

    Mapping photonic entanglement into and out of a quantum memory

    Full text link
    Recent developments of quantum information science critically rely on entanglement, an intriguing aspect of quantum mechanics where parts of a composite system can exhibit correlations stronger than any classical counterpart. In particular, scalable quantum networks require capabilities to create, store, and distribute entanglement among distant matter nodes via photonic channels. Atomic ensembles can play the role of such nodes. So far, in the photon counting regime, heralded entanglement between atomic ensembles has been successfully demonstrated via probabilistic protocols. However, an inherent drawback of this approach is the compromise between the amount of entanglement and its preparation probability, leading intrinsically to low count rate for high entanglement. Here we report a protocol where entanglement between two atomic ensembles is created by coherent mapping of an entangled state of light. By splitting a single-photon and subsequent state transfer, we separate the generation of entanglement and its storage. After a programmable delay, the stored entanglement is mapped back into photonic modes with overall efficiency of 17 %. Improvements of single-photon sources together with our protocol will enable "on demand" entanglement of atomic ensembles, a powerful resource for quantum networking.Comment: 7 pages, and 3 figure

    Correcting pervasive errors in RNA crystallography through enumerative structure prediction

    Full text link
    Three-dimensional RNA models fitted into crystallographic density maps exhibit pervasive conformational ambiguities, geometric errors and steric clashes. To address these problems, we present enumerative real-space refinement assisted by electron density under Rosetta (ERRASER), coupled to Python-based hierarchical environment for integrated 'xtallography' (PHENIX) diffraction-based refinement. On 24 data sets, ERRASER automatically corrects the majority of MolProbity-assessed errors, improves the average Rfree factor, resolves functionally important discrepancies in noncanonical structure and refines low-resolution models to better match higher-resolution models
    corecore