1,802 research outputs found

    Geometrical Hyperbolic Systems for General Relativity and Gauge Theories

    Full text link
    The evolution equations of Einstein's theory and of Maxwell's theory---the latter used as a simple model to illustrate the former--- are written in gauge covariant first order symmetric hyperbolic form with only physically natural characteristic directions and speeds for the dynamical variables. Quantities representing gauge degrees of freedom [the spatial shift vector βi(t,xj)\beta^{i}(t,x^{j}) and the spatial scalar potential ϕ(t,xj)\phi(t,x^{j}), respectively] are not among the dynamical variables: the gauge and the physical quantities in the evolution equations are effectively decoupled. For example, the gauge quantities could be obtained as functions of (t,xj)(t,x^{j}) from subsidiary equations that are not part of the evolution equations. Propagation of certain (``radiative'') dynamical variables along the physical light cone is gauge invariant while the remaining dynamical variables are dragged along the axes orthogonal to the spacelike time slices by the propagating variables. We obtain these results by (1)(1) taking a further time derivative of the equation of motion of the canonical momentum, and (2)(2) adding a covariant spatial derivative of the momentum constraints of general relativity (Lagrange multiplier βi\beta^{i}) or of the Gauss's law constraint of electromagnetism (Lagrange multiplier ϕ\phi). General relativity also requires a harmonic time slicing condition or a specific generalization of it that brings in the Hamiltonian constraint when we pass to first order symmetric form. The dynamically propagating gravity fields straightforwardly determine the ``electric'' or ``tidal'' parts of the Riemann tensor.Comment: 24 pages, latex, no figure

    A rigidity theorem for nonvacuum initial data

    Get PDF
    In this note we prove a theorem on non-vacuum initial data for general relativity. The result presents a ``rigidity phenomenon'' for the extrinsic curvature, caused by the non-positive scalar curvature. More precisely, we state that in the case of asymptotically flat non-vacuum initial data if the metric has everywhere non-positive scalar curvature then the extrinsic curvature cannot be compactly supported.Comment: This is an extended and published version: LaTex, 10 pages, no figure

    Einstein and Yang-Mills theories in hyperbolic form without gauge-fixing

    Full text link
    The evolution of physical and gauge degrees of freedom in the Einstein and Yang-Mills theories are separated in a gauge-invariant manner. We show that the equations of motion of these theories can always be written in flux-conservative first-order symmetric hyperbolic form. This dynamical form is ideal for global analysis, analytic approximation methods such as gauge-invariant perturbation theory, and numerical solution.Comment: 12 pages, revtex3.0, no figure

    Cosmological spacetimes not covered by a constant mean curvature slicing

    Get PDF
    We show that there exist maximal globally hyperbolic solutions of the Einstein-dust equations which admit a constant mean curvature Cauchy surface, but are not covered by a constant mean curvature foliation.Comment: 11 page

    Geometrically motivated hyperbolic coordinate conditions for numerical relativity: Analysis, issues and implementations

    Full text link
    We study the implications of adopting hyperbolic driver coordinate conditions motivated by geometrical considerations. In particular, conditions that minimize the rate of change of the metric variables. We analyze the properties of the resulting system of equations and their effect when implementing excision techniques. We find that commonly used coordinate conditions lead to a characteristic structure at the excision surface where some modes are not of outflow-type with respect to any excision boundary chosen inside the horizon. Thus, boundary conditions are required for these modes. Unfortunately, the specification of these conditions is a delicate issue as the outflow modes involve both gauge and main variables. As an alternative to these driver equations, we examine conditions derived from extremizing a scalar constructed from Killing's equation and present specific numerical examples.Comment: 9 figure

    Proof of the Thin Sandwich Conjecture

    Get PDF
    We prove that the Thin Sandwich Conjecture in general relativity is valid, provided that the data (gab,g˙ab)(g_{ab},\dot g_{ab}) satisfy certain geometric conditions. These conditions define an open set in the class of possible data, but are not generically satisfied. The implications for the ``superspace'' picture of the Einstein evolution equations are discussed.Comment: 8 page

    The constraint equations for the Einstein-scalar field system on compact manifolds

    Get PDF
    We study the constraint equations for the Einstein-scalar field system on compact manifolds. Using the conformal method we reformulate these equations as a determined system of nonlinear partial differential equations. By introducing a new conformal invariant, which is sensitive to the presence of the initial data for the scalar field, we are able to divide the set of free conformal data into subclasses depending on the possible signs for the coefficients of terms in the resulting Einstein-scalar field Lichnerowicz equation. For many of these subclasses we determine whether or not a solution exists. In contrast to other well studied field theories, there are certain cases, depending on the mean curvature and the potential of the scalar field, for which we are unable to resolve the question of existence of a solution. We consider this system in such generality so as to include the vacuum constraint equations with an arbitrary cosmological constant, the Yamabe equation and even (all cases of) the prescribed scalar curvature problem as special cases.Comment: Minor changes, final version. To appear: Classical and Quantum Gravit

    Cones of material response functions in 1D and anisotropic linear viscoelasticity

    Full text link
    Viscoelastic materials have non-negative relaxation spectra. This property implies that viscoelastic response functions satisfy certain necessary and sufficient conditions. It is shown that these conditions can be expressed in terms of each viscoelastic response function ranging over a cone. The elements of each cone are completely characterized by an integral representation. The 1:1 correspondences between the viscoelastic response functions are expressed in terms of cone-preserving mappings and their inverses. The theory covers scalar and tensor-valued viscoelastic response functionsComment: submitted to Proc. Roy. Soc.

    A model problem for conformal parameterizations of the Einstein constraint equations

    Full text link
    We investigate the possibility that the conformal and conformal thin sandwich (CTS) methods can be used to parameterize the set of solutions of the vacuum Einstein constraint equations. To this end we develop a model problem obtained by taking the quotient of certain symmetric data on conformally flat tori. Specializing the model problem to a three-parameter family of conformal data we observe a number of new phenomena for the conformal and CTS methods. Within this family, we obtain a general existence theorem so long as the mean curvature does not change sign. When the mean curvature changes sign, we find that for certain data solutions exist if and only if the transverse-traceless tensor is sufficiently small. When such solutions exist, there are generically more than one. Moreover, the theory for mean curvatures changing sign is shown to be extremely sensitive with respect to the value of a coupling constant in the Einstein constraint equations.Comment: 40 pages, 4 figure
    • …
    corecore