44 research outputs found

    Application of the codon-shuffling method : Synthesis and selection of de novo proteins as antibacterials

    Get PDF
    Library-based methods of non-rational and part-rational designed de novo peptides are worthy beacons in the search for bioactive peptides and proteins of medicinal importance. In this report, we have used a recently developed directed evolution method called "codon shuffling" for the synthesis and selection of bioactive proteins. The selection of such proteins was based on the creation of an inducible library of "codon-shuffled" genes that are constructed from the ligation-based assembly of judiciously designed hexamer DNA duplexes called dicodons. Upon induction with isopropyl 1-thio-beta-D-galactopyranoside, some library members were found to express dicodon-incorporated proteins. Because of this, the host cells, in our case Escherichia coli, were unable to grow any further. The bactereostatic/lytic nature of the dicodon proteins was monitored by growth curves as well as by zone clearance studies. Transmission electron microscopy of the affected cells illustrated the extent of cell damage. The proteins themselves were overexpressed as fusion partners and subsequently purified to homogeneity. One such purified protein was found to strongly bind heparin, an indication that the interaction of the de novo proteins may be with the nucleic acids of the host cell, much like many of the naturally occurring antibacterial peptides, e.g. Buforin. Therefore, our approach may help in generating a multitude of finely tuned antibacterial proteins that can potentially be regarded as lead compounds once the method is extended to pathogenic hosts, such as Mycobacteria, for example

    EphH, a unique epoxide hydrolase encoded by Rv3338 is involved in the survival of Mycobacterium tuberculosis under in vitro stress and vacuolar pH-induced changes

    Get PDF
    IntroductionMycobacterium tuberculosis (Mtb), one of the deadliest human pathogen, has evolved with different strategies of survival inside the host, leading to a chronic state of infection. Phagosomally residing Mtb encounters a variety of stresses, including increasing acidic pH. To better understand the host-pathogen interaction, it is imperative to identify the role of various genes involved in the survivability of Mtb during acidic pH environment.MethodsBio-informatic and enzymatic analysis were used to identify Mtb gene, Rv3338, as epoxide hydrolase. Subsequently, CRISPRi knockdown strategy was used to decipher its role for Mtb survival during acidic stress, nutrient starvation and inside macrophages. Confocal microscopy was used to analyse its role in subverting phagosomal acidification within macrophage.ResultsThe present work describes the characterization of Rv3338 which was previously known to be associated with the aprABC locus induced while encountering acidic stress within the macrophage. Bio-informatic analysis demonstrated its similarity to epoxide hydrolase, which was confirmed by enzymatic assays, thus, renamed EphH. Subsequently, we have deciphered its indispensable role for Mtb in protection from acidic stress by using the CRISPRi knockdown strategy. Our data demonstrated the pH dependent role of EphH for the survival of Mtb during nutrient starvation and in conferring resistance against elevated endogenous ROS levels during stress environment.ConclusionTo the best of our knowledge, this is the first report of an EH of Mtb as a crucial protein for bacterial fitness inside the host, a phenomenon central to its pathogenesis

    A comparative study on the isolation and cerium (IV) ammonium nitrate mediated oxidative transformation of oleanolic acid and ursolic acid

    No full text
    598-603<span style="font-size:11.0pt;mso-bidi-font-size: 10.0pt;font-family:" times="" new="" roman";mso-fareast-font-family:"times="" roman";="" mso-bidi-font-family:"times="" roman";letter-spacing:-.1pt;mso-ansi-language:="" en-gb;mso-fareast-language:en-us;mso-bidi-language:ar-sa"="" lang="EN-GB">Oleanolic acid and Ursolic acid, two important pentacyclic triterpenes have been extracted from two different sources and have been subjected to oxidation using cerium (IV) ammonium nitrate in methanol. Two new oxidation products, namely a lactone and an ester have been obtained which however show decreased antibacterial activity in comparison to the parent compounds.</span

    Investigating the Photosensitivity of Koneramines for Cell Imaging and Therapeutic Applications

    No full text
    The photophysical properties of the anthracene appended koneramines (LAn) were analyzed and utilized as a chemosensor for the selective detection of Cd2+ and Zn2+. The complexation-induced inhibition of PET (photo-induced electron transfer) from the chelating nitrogen atoms to the excited state of the anthracene moiety resulted in a fluorescence "turn-on" signal upon binding with Cd2+ and Zn2+. The confocal microscopic imaging studies performed on the MCF-7 cells validated that the compound is potentially useful for detecting Cd2+ and Zn2+ inside the cells. The cadmium complex exhibited unique bactericidal activity against clinically relevant human pathogens. The excellent activity against multidrug-resistant S. aureus makes the complex useful as a new, easily synthesizable antibiotic. The cadmium complex LAnCdCl2 was not cytotoxic against vero cells with a selectivity index of 40, exhibited concentration dependent bactericidal killing, non-interactive with several other clinically approved standard drugs, exhibited prolonged post-antibiotic effect (PAE) against S. aureus ATCC 29213 and possesses antibiofilm activity

    Exploration of Potent Antiviral Phytomedicines from Lauraceae Family Plants against SARS-CoV-2 Main Protease

    No full text
    A new Coronaviridae strain, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), emerged from Wuhan city of China and caused one of the substantial global health calamities in December 2019. Even though several vaccines and drugs have been developed worldwide since COVID-19, a cost-effective drug with the least side effects is still unavailable. Currently, plant-derived compounds are mostly preferred to develop antiviral therapeutics due to its less toxicity, easy access, and cost-effective characteristics. Therefore, in this study, 124 phytochemical compounds from plants of Lauraceae family with medicinal properties were virtually screened against SARS-CoV-2 Mpro. Identification of four phytomolecules, i.e., cassameridine, laetanine, litseferine and cassythicine, with docking scores &minus;9.3, &minus;8.8, &minus;8.6, and &minus;8.6 kcal/mol, respectively, were undertaken by virtual screening, and molecular docking. Furthermore, the molecular dynamic simulation and essential dynamics analysis have contributed in understanding the stability and inhibitory effect of these selected compounds. These phytomolecules can be considered for further in vitro and in vivo experimental study to develop anti-SARS-CoV-2 therapeutics targeting the main protease (Mpro)
    corecore