18 research outputs found

    Impact of Phytoconstituents on Oral Health Practices: A Post COVID-19 Observation

    Get PDF
    Appropriate oral hygiene significantly reduces the possibility of oral infections. However, dental caries and periodontal diseases are major oral health issues causing chronic diseases due to poor oral health. Recently, herbal compounds have gained interest in maintaining oral health. Extracts of burdock root (Arctium), noni fruit (Morinda citrifolia), and neem leaf (Azadirachta indica) are now used as intracanal medicaments in endodontics and periodontics. Plectranthus amboinicus species and other plants produces essential oil like β-caryophyllene, p-cymene, and γ-terpinenecan exhibiting antibacterial activity, highlighting phytoconstituents plays a vital role in oral health. The COVID-19 pandemic highlighted the importance of hygiene and sanitization, to curb SARS-CoV-2. Oral cavity is among the gateways for virus entry into saliva. Saliva is a potential reservoir of SARS-CoV-2, and there is an increased risk of infection if there is any fissure in the mouth. This enables entry of virus into the vascular system through gingival or periodontal pocket, possibly reaching lung periphery then to lung vessels by interacting with endothelial surface receptors triggering pulmonary vasoconstriction and lung damage due to endothelial dysfunction. This review aims to draw attention to the possible route of SARS-CoV-2 infection via the oral cavity and the importance of oral hygiene against COVID-19

    Plant prebiotics and their role in the amelioration of diseases

    Get PDF
    Prebiotics are either natural or synthetic non-digestible (non-)carbohydrate substances that boost the proliferation of gut microbes. Undigested fructooligosaccharides in the large intestine are utilised by the beneficial microorganisms for the synthesis of short-chain fatty acids for their own growth. Although various food products are now recognized as having prebiotic properties, several others, such as almonds, artichoke, barley, chia seeds, chicory, dandelion greens, flaxseeds, garlic, and oats, are being explored and used as functional foods. Considering the benefits of these prebiotics in mineral absorption, metabolite production, gut microbiota modulation, and in various diseases such as diabetes, allergy, metabolic disorders, and necrotising enterocolitis, increasing attention has been focused on their applications in both food and pharmaceutical industries, although some of these food products are actually used as food supplements. This review aims to highlight the potential and need of these prebiotics in the diet and also discusses data related to the distinct types, sources, modes of action, and health benefits

    Detection of bacterial pathogens and antibiotic residues in chicken meat: a review

    Get PDF
    Detection of pathogenic microbes as well as antibiotic residues in food animals, especially in chicken, has become a matter of food security worldwide. The association of various pathogenic bacteria in different diseases and selective pressure induced by accumulated antibiotic residue to develop antibiotic resistance is also emerging as the threat to human health. These challenges have made the containment of pathogenic bacteria and early detection of antibiotic residue highly crucial for robust and precise detection. However, the traditional culture-based approaches are well-comprehended for identifying microbes. Nevertheless, because they are inadequate, time-consuming and laborious, these conventional methods are not predominantly used. Therefore, it has become essential to explore alternatives for the easy and robust detection of pathogenic microbes and antibiotic residue in the food source. Presently, different monitoring, as well as detection techniques like PCR-based, assay (nucleic acid)-based, enzyme-linked immunosorbent assays (ELISA)-based, aptamer-based, biosensor-based, matrix-assisted laser desorption/ionization-time of flight mass spectrometry-based and electronic nose-based methods, have been developed for detecting the presence of bacterial contaminants and antibiotic residues. The current review intends to summarize the different techniques and underline the potential of every method used for the detection of bacterial pathogens and antibiotic residue in chicken meat

    Plant Fortification of the Diet for Anti-Ageing Effects: A Review

    No full text
    Ageing is an enigmatic and progressive biological process which undermines the normal functions of living organisms with time. Ageing has been conspicuously linked to dietary habits, whereby dietary restrictions and antioxidants play a substantial role in slowing the ageing process. Oxygen is an essential molecule that sustains human life on earth and is involved in the synthesis of reactive oxygen species (ROS) that pose certain health complications. The ROS are believed to be a significant factor in the progression of ageing. A robust lifestyle and healthy food, containing dietary antioxidants, are essential for improving the overall livelihood and decelerating the ageing process. Dietary antioxidants such as adaptogens, anthocyanins, vitamins A/D/C/E and isoflavones slow the ageing phenomena by reducing ROS production in the cells, thereby improving the life span of living organisms. This review highlights the manifestations of ageing, theories associated with ageing and the importance of diet management in ageing. It also discusses the available functional foods as well as nutraceuticals with anti-ageing potential

    Role of Mycobacterium tuberculosis Ser/Thr Kinase PknF: Implications in Glucose Transport and Cell Division

    No full text
    Protein kinases have a diverse array of functions in bacterial physiology, with a distinct role in the regulation of development, stress responses, and pathogenicity. pknF, one of the 11 kinases of Mycobacterium tuberculosis, encodes an autophosphorylating, transmembrane serine/threonine protein kinase, which is absent in the fast-growing, nonpathogenic Mycobacterium smegmatis. Herein, we investigate the physiological role of PknF using an antisense strategy with M. tuberculosis and expressing PknF and its kinase mutant (K41M) in M. smegmatis. Expression of PknF in M. smegmatis led to reduction in the growth rate and shortening and swelling of cells with constrictions. Interestingly, an antisense strain of M. tuberculosis expressing a low level of PknF displayed fast growth and a deformed cell morphology compared to the wild-type strain. Electron microscopy showed that most of the cells of the antisense strain were of a smaller size with an aberrant septum. Furthermore, nutrient transport analysis of these strains was conducted using (3)H-labeled and (14)C-labeled substrates. A significant increase in the uptake of d-glucose but not of glycerol, leucine, or oleic acid was observed in the antisense strain compared to the wild-type strain. The results suggest that PknF plays a direct/indirect role in the regulation of glucose transport, cell growth, and septum formation in M. tuberculosis

    Gut-brain axis and Alzheimer's disease: Therapeutic interventions and strategies

    No full text
    The effects of the gut microbiome on the brain and the mechanisms of gut-brain communication have been popular research topics for the past few decades. The term gut-brain axis (GBA) evolved to illustrate how the gut and gut microbiota communicate with the brain. The gut-brain axis is an interplay of the neural, endocrine, immune, and metabolic pathways that help to maintain the brain's homeostasis. Several groups have reported that gut dysbiosis is significantly associated with neuroinflammation, aggregation of amyloid beta, and an increase in oxidative stress during Alzheimer’s disease (AD). Understanding the exact mechanism of how the gut microbiome influences brain function may help develop new therapeutic modalities for AD. This review highlights the functioning of the gut microbiome in AD pathogenesis, the potential beneficial effects of probiotic exopolysaccharides as therapeutic molecules, and the potential benefits of probiotic exopolysaccharides (EPS) as a ray of hope in treating AD

    Phosphoprotein phosphatase of Mycobacterium tuberculosis dephosphorylates serine-threonine kinases PknA and PknB

    No full text
    The regulation of cellular processes by the modulation of protein phosphorylation/dephosphorylation is fundamental to a large number of processes in living organisms. These processes are carried out by specific protein kinases and phosphatases. In this study, a previously uncharacterized gene (Rv0018c) of Mycobacterium tuberculosis, designated as mycobacterial Ser/Thr phosphatase (mstp), was cloned, expressed in Escherichia coli, and purified as a histidine-tagged protein. Purified protein (Mstp) dephosphorylated the phosphorylated Ser/Thr residues of myelin basic protein (MBP), histone, and casein but failed to dephosphorylate phospho-tyrosine residue of these substrates, suggesting that this phosphatase is specific for Ser/Thr residues. It has been suggested that mstp is a part of a gene cluster that also includes two Ser/Thr kinases pknA and pknB. We show that Mstp is a trans-membrane protein that dephosphorylates phosphorylated PknA and PknB. Southern blot analysis revealed that mstp is absent in the fast growing saprophytes Mycobacterium smegmatis and Mycobacterium fortuitum. PknA has been shown, whereas PknB has been proposed to play a role in cell division. The presence of mstp in slow growing mycobacterial species, its trans-membrane localization, and ability to dephosphorylate phosphorylated PknA and PknB implicates that Mstp may play a role in regulating cell division in M. tuberculosis

    Applications of Fruit Polyphenols and Their Functionalized Nanoparticles Against Foodborne Bacteria: A Mini Review

    Get PDF
    The ingestion of contaminated water and food is known to cause food illness. Moreover, on assessing the patients suffering from foodborne disease has revealed the role of microbes in such diseases. Concerning which different methods have been developed for protecting food from microbes, the treatment of food with chemicals has been reported to exhibit an unwanted organoleptic effect while also affecting the nutritional value of food. Owing to these challenges, the demand for natural food preservatives has substantially increased. Therefore, the interest of researchers and food industries has shifted towards fruit polyphenols as potent inhibitors of foodborne bacteria. Recently, numerous fruit polyphenols have been acclaimed for their ability to avert toxin production and biofilm formation. Furthermore, various studies have recommended using fruit polyphenols solely or in combination with chemical disinfectants and food preservatives. Currently, different nanoparticles have been synthesized using fruit polyphenols to curb the growth of pathogenic microbes. Hence, this review intends to summarize the current knowledge about fruit polyphenols as antibacterial agents against foodborne pathogens. Additionally, the application of different fruit extracts in synthesizing functionalized nanoparticles has also been discussed

    Nuclear localization and in situ DNA damage by Mycobacterium tuberculosis nucleoside-diphosphate kinase

    No full text
    Nucleoside-diphosphate kinase of Mycobacterium tuberculosis (mNdK) is a secretory protein, but the rationale behind secreting an enzyme involved in the maintenance of cellular pool of nucleoside triphosphates is not clearly understood. To elucidate the biological significance of mNdK secretion, we expressed mNdK fused to green fluorescent protein in HeLa and COS-1 cells. Interestingly, mNdK was detected in the nuclei of HeLa and COS-1 cells. Incubation of mNdK with nuclei isolated from HeLa and COS-1 cells led to in situ damage of chromosomal DNA. Surface plasmon resonance studies demonstrated that mNdK binds supercoiled plasmid DNA lacking apurinic/apyrimidinic sites with a dissociation constant of 30 ± 3.2 μm. Plasmid cleavage by mNdK was found to be dependent on the specific divalent metal ion and inhibited by a metal ion chelator. Moreover, the metal ion-dependent DNA cleavage by mNdK was mediated by superoxide radicals as detected by electron paramagnetic resonance. The cleavage reaction was inhibited under nitrogen atmosphere confirming the necessity of molecular oxygen for DNA cleavage. In view of the findings that mNdK is secreted by intracellular mycobacteria and damages the nuclear DNA, it can be postulated that mNdK may cause cell death that could help in the dissemination of the pathogen
    corecore