5 research outputs found

    Scientific opportunies for bERLinPro 2020+, report with ideas and conclusions from bERLinProCamp 2019

    Get PDF
    The Energy Recovery Linac (ERL) paradigm offers the promise to generate intense electron beams of superior quality with extremely small six-dimensional phase space for many applications in the physical sciences, materials science, chemistry, health, information technology and security. Helmholtz-Zentrum Berlin started in 2010 an intensive R\&D programme to address the challenges related to the ERL as driver for future light sources by setting up the bERLinPro (Berlin ERL Project) ERL with 50 MeV beam energy and high average current. The project is close to reach its major milestone in 2020, acceleration and recovery of a high brightness electron beam. The goal of bERLinProCamp 2019 was to discuss scientific opportunities for bERLinPro 2020+. bERLinProCamp 2019 was held on Tue, 17.09.2019 at Helmholtz-Zentrum Berlin, Berlin, Germany. This paper summarizes the main themes and output of the workshop

    Terahertz Bessel Beams Formed by Binary and Holographic Axicons

    No full text
    The characteristics of high-power vortex Bessel beams in the terahertz range (λ=141 μm) obtained with the use of diffractive axicons (DAs) illuminated by a Gaussian beam of the Novosibirsk free-electron laser were studied. Two of the three possible types of DA recently described in our previous paper, namely, binary spiral silicon axicons (BAs), forming beams with a topological charge l equal to 0–4 and 9, and a diamond “holographic” axicon (HA), forming a beam with l=9, were used in the experiments. These axicons formed beams whose cross sections in the region of inner Bessel rings were close to those of ideal Bessel beams, but their intensities varied in azimuth with a frequency of l and 2l for the BAs and HA, respectively. However, in the case of the BAs, the beams had a pronounced helical structure at the periphery, whereas for the HA, the beam was axisymmetric. By focusing these beams with a lens, we studied the structure of the so-called “perfect” beams (PBs). While an ideal Bessel beam exhibits a PB as a thin ring, in the case of the BAs, we observed a broadened ring structure consisting of 2l short spirals, and for the HA, we observed a narrow ring with 2l maxima in azimuth. A comparison of the numerical calculations and experiments showed that the observed azimuthal intensity variations can be attributed to inaccuracies in the preparation of the axicon relief and/or discrepancies between the calculated and actual wavelengths, within a few percent. The results of this work enable the establishment of quality requirements for axicon manufacture and the appropriate selection of the axicon type in accordance with the requirements for the beam

    Simulation D1P4 l= +1 M = 3.3.avi

    No full text
    This is a videofilm for the diffraction of Bessel vortex beam on amplitude grating with round holes (hole diameter is 1 mm, period is 4 mm):diffraction patterns vs. distance wavelength is 130 um (simulation)

    First terahertz-range experiments on pump – probe setup at Novosibirsk free electron laser

    Get PDF
    A single-color pump-probe system has been commissioned at the Novosibirsk free electron laser. The laser emits a tunable monochromatic terahertz radiation. To prove the proper system operation, we investigated the time-resolved absorption of a sample of n-type germanium doped with antimony, which was previously investigated at the FELBE facility, in the temperature range from 5 to 40 K. The measured relaxation time amounted to about 1.7 ns, which agreed with the results obtained at the FELBE. The results of pump-probe measurements of non-equilibrium dynamics of hot electrons in the germanium crystal at cryogenic temperatures are presented for wavelengths of 105, 141 and 150 ÎĽm
    corecore