41 research outputs found

    Gran Ballet de Montecarlo

    Get PDF
    Concerto Barrocco, amb la mĂșsica del concert en re menor per a dos violins de Johann Sebastian Bach i coreografia de George Balanchine; La sonambula, amb mĂșsica de Bellini arranjada i instrumentada per Vittorio Rietti i coreografiada per George Balanchine; El Cisne Negro, pas a dos del tercer acte de El lago de los cisnes, amb mĂșsica de Tchaikowsky i coreografia de Marius Petipa; Persephone, de Robert Schumann amb coreografia de John TarasDirecciĂł artĂ­stica Napoleone AnnovazziEmpresa: JosĂ© F. ArquerOrquesta SinfĂłnica del Gran Teatro del Liceo ; directors Gustave Cloez i Charles BoisardDe cada obra s'ha digitalitzat un programa sencer. De la resta s'han digitalitzat les parts que sĂłn diferents

    New approaches for predicting and generating human motions from 3D skeletons : application to non-verbal social interactions in virtual reality

    No full text
    Dans cette thĂšse, nous abordons diverses tĂąches de gĂ©nĂ©ration de squelettes 3D de corps humain en mouvement. La capacitĂ© Ă  prĂ©dire et gĂ©nĂ©rer des mouvements humains est devenue un sujet important dans de nombreux secteurs tel que la conduite de vĂ©hicules autonomes, l'animation et la rĂ©alitĂ© virtuelle. Bien que l'apprentissage profond ait considĂ©rablement amĂ©liorĂ© les performances des modĂšles gĂ©nĂ©ratifs ces derniĂšres annĂ©es, la gĂ©nĂ©ration de mouvements humains reste un problĂšme ouvert. Les mĂ©thodes les plus rĂ©centes ont toujours du mal Ă  gĂ©nĂ©rer des mouvements humains de bonne qualitĂ©. Cela rĂ©sulte de la nĂ©cessitĂ© de modĂ©liser les composantes spatiales et temporelles simultanĂ©ment et de comprendre les interactions entre les diffĂ©rentes parties du corps. La tĂąche est Ă©galement difficile en raison de la grande variabilitĂ© des mouvements, Ă  la fois en termes de temps, puisque le mĂȘme mouvement peut ĂȘtre effectuĂ© Ă  une vitesse diffĂ©rente, et en termes d'espace, puisque l'amplitude du mouvement peut varier considĂ©rablement. De plus les mouvements 3D gĂ©nĂ©rĂ©s doivent ĂȘtre prĂ©cis, rĂ©alistes et fluides. Nous proposons un nouveau rĂ©seau antagoniste gĂ©nĂ©ratif (GAN) prĂ©dictif de Wasserstein pour prĂ©dire la fin du mouvement d'une personne. Notre rĂ©seau prĂ©dictif utilise une rĂ©presentation des courbes appelĂ©e SRVF pour modĂ©liser la trajectoires des mouvements humains et permet une prĂ©diction prĂ©cise, en temps rĂ©el, de mouvement sans discontinuitĂ©s comme le montrent nos expĂ©riences. Dans une seconde Ă©tape de la thĂšse nous nous intĂ©ressons Ă  la gĂ©nĂ©ration des mouvements d'interaction entre deux personnes. Tout d'abord, nous prĂ©sentons une nouvelle mĂ©thode pour gĂ©nĂ©rer un mouvement de rĂ©action en rĂ©ponse Ă  un mouvement d'action. Contrairement aux mĂ©thodes de l'Ă©tat de l'art qui se focalisent sur la gĂ©nĂ©ration du mouvement d'une personne, nous proposons Interformer, un Transformer qui gĂ©nĂšre des mouvements de rĂ©action en utilisant les capacitĂ©s de modĂ©lisation temporelles des rĂ©seaux Transformer ainsi que de nouveaux modules pour modĂ©liser les interactions. Nos rĂ©sultats montrent que l'approche Interformer surpasse les mĂ©thodes de l'Ă©tat de l'art. Ensuite nous dĂ©veloppons une nouvelle architecture pour gĂ©nĂ©rer le mouvement d'interaction de deux personnes en fonction de la classe du mouvement. Notre architecture exploite les capacitĂ©s des modĂšles de diffusion, de l'architecture Transformer et l'apprentissage de graphes bipartis. Nos rĂ©sultats montrent que notre mĂ©thode surpasse l'Ă©tat de l'art quantitativement et qualitativement. Nous proposons une application qui utilise la mĂ©thode de prĂ©diction du mouvement afin de permettre Ă  un agent virtuel de prĂ©dire et de reconnaĂźtre le mouvement d'une personne dans le cadre des interactions non-verbales dans un environnement virtuel. Pour cela nous avons proposĂ© une nouvelle base de donnĂ©es de mouvement 3D capturĂ©e avec un systĂšme de capture de mouvement de haute qualitĂ© et une camĂ©ra de profondeur.In this thesis, we address various tasks for generating 3D skeletons of humans in motion. The ability to predict and generate human motion has become an important topic in recent years in many domains including self-driving vehicles, animation, and virtual reality. While in recent years deep learning has greatly increased the performance of generative models, the generation of human motion remains an open issue. Even the more recent methods still struggle to generate high-quality human motion. This is due to the need to model both spatial and temporal components and of understanding the interactions of human body parts. The task is also challenging due to the high variability of motions both in terms of time since the same motion can be performed at a different speed, and in terms of space, since the amplitude of motion can vary greatly. Furthermore, the generated 3D motions must be accurate, realistic, and smooth. We propose a new predictive Wasserstein generative adversarial network (GAN) to predict the end of a person's motion. Our predictive network uses the SRVF representation to modelize human motion and allow the prediction of accurate motion without discontinuities in real-time as shown in our experiments against state-of-the-art methods. We then work on the generation of interaction motions between two persons. We present a new method to generate a reaction motion in response to an action. Unlike the state of the art methods that focus on generating the motion of a single person, we propose Interformer, a Transformer to predict the reaction to an action using the temporal modeling abilities of the Transformer network as well as new skeleton adjacency and interaction distance modules to model the interactions. We compare our results to interaction generation and motion prediction methods and outperform them. We develop a new architecture to generate the motion of two people interacting based on a class label. Our architecture leverages the capabilities of diffusion models, Transformer architecture, and bipartite graph networks. Our results show that our method outperforms the state-of-the-art both quantitatively and qualitatively. We propose an application that uses our motion prediction method to allow a virtual agent to predict and recognize a person's motion in non-verbal interactions in a virtual environment. For this purpose, we propose a new 3D motion database captured with a high quality motion capture system and a depth camera

    Nouvelles approches pour la prédiction et la génération de mouvement humain utilisant des squelettes 3D : application aux interactions non-verbales en réalité virtuelle

    No full text
    In this thesis, we address various tasks for generating 3D skeletons of humans in motion. The ability to predict and generate human motion has become an important topic in recent years in many domains including self-driving vehicles, animation, and virtual reality. While in recent years deep learning has greatly increased the performance of generative models, the generation of human motion remains an open issue. Even the more recent methods still struggle to generate high-quality human motion. This is due to the need to model both spatial and temporal components and of understanding the interactions of human body parts. The task is also challenging due to the high variability of motions both in terms of time since the same motion can be performed at a different speed, and in terms of space, since the amplitude of motion can vary greatly. Furthermore, the generated 3D motions must be accurate, realistic, and smooth. We propose a new predictive Wasserstein generative adversarial network (GAN) to predict the end of a person's motion. Our predictive network uses the SRVF representation to modelize human motion and allow the prediction of accurate motion without discontinuities in real-time as shown in our experiments against state-of-the-art methods. We then work on the generation of interaction motions between two persons. We present a new method to generate a reaction motion in response to an action. Unlike the state of the art methods that focus on generating the motion of a single person, we propose Interformer, a Transformer to predict the reaction to an action using the temporal modeling abilities of the Transformer network as well as new skeleton adjacency and interaction distance modules to model the interactions. We compare our results to interaction generation and motion prediction methods and outperform them. We develop a new architecture to generate the motion of two people interacting based on a class label. Our architecture leverages the capabilities of diffusion models, Transformer architecture, and bipartite graph networks. Our results show that our method outperforms the state-of-the-art both quantitatively and qualitatively. We propose an application that uses our motion prediction method to allow a virtual agent to predict and recognize a person's motion in non-verbal interactions in a virtual environment. For this purpose, we propose a new 3D motion database captured with a high quality motion capture system and a depth camera.Dans cette thĂšse, nous abordons diverses tĂąches de gĂ©nĂ©ration de squelettes 3D de corps humain en mouvement. La capacitĂ© Ă  prĂ©dire et gĂ©nĂ©rer des mouvements humains est devenue un sujet important dans de nombreux secteurs tel que la conduite de vĂ©hicules autonomes, l'animation et la rĂ©alitĂ© virtuelle. Bien que l'apprentissage profond ait considĂ©rablement amĂ©liorĂ© les performances des modĂšles gĂ©nĂ©ratifs ces derniĂšres annĂ©es, la gĂ©nĂ©ration de mouvements humains reste un problĂšme ouvert. Les mĂ©thodes les plus rĂ©centes ont toujours du mal Ă  gĂ©nĂ©rer des mouvements humains de bonne qualitĂ©. Cela rĂ©sulte de la nĂ©cessitĂ© de modĂ©liser les composantes spatiales et temporelles simultanĂ©ment et de comprendre les interactions entre les diffĂ©rentes parties du corps. La tĂąche est Ă©galement difficile en raison de la grande variabilitĂ© des mouvements, Ă  la fois en termes de temps, puisque le mĂȘme mouvement peut ĂȘtre effectuĂ© Ă  une vitesse diffĂ©rente, et en termes d'espace, puisque l'amplitude du mouvement peut varier considĂ©rablement. De plus les mouvements 3D gĂ©nĂ©rĂ©s doivent ĂȘtre prĂ©cis, rĂ©alistes et fluides. Nous proposons un nouveau rĂ©seau antagoniste gĂ©nĂ©ratif (GAN) prĂ©dictif de Wasserstein pour prĂ©dire la fin du mouvement d'une personne. Notre rĂ©seau prĂ©dictif utilise une rĂ©presentation des courbes appelĂ©e SRVF pour modĂ©liser la trajectoires des mouvements humains et permet une prĂ©diction prĂ©cise, en temps rĂ©el, de mouvement sans discontinuitĂ©s comme le montrent nos expĂ©riences. Dans une seconde Ă©tape de la thĂšse nous nous intĂ©ressons Ă  la gĂ©nĂ©ration des mouvements d'interaction entre deux personnes. Tout d'abord, nous prĂ©sentons une nouvelle mĂ©thode pour gĂ©nĂ©rer un mouvement de rĂ©action en rĂ©ponse Ă  un mouvement d'action. Contrairement aux mĂ©thodes de l'Ă©tat de l'art qui se focalisent sur la gĂ©nĂ©ration du mouvement d'une personne, nous proposons Interformer, un Transformer qui gĂ©nĂšre des mouvements de rĂ©action en utilisant les capacitĂ©s de modĂ©lisation temporelles des rĂ©seaux Transformer ainsi que de nouveaux modules pour modĂ©liser les interactions. Nos rĂ©sultats montrent que l'approche Interformer surpasse les mĂ©thodes de l'Ă©tat de l'art. Ensuite nous dĂ©veloppons une nouvelle architecture pour gĂ©nĂ©rer le mouvement d'interaction de deux personnes en fonction de la classe du mouvement. Notre architecture exploite les capacitĂ©s des modĂšles de diffusion, de l'architecture Transformer et l'apprentissage de graphes bipartis. Nos rĂ©sultats montrent que notre mĂ©thode surpasse l'Ă©tat de l'art quantitativement et qualitativement. Nous proposons une application qui utilise la mĂ©thode de prĂ©diction du mouvement afin de permettre Ă  un agent virtuel de prĂ©dire et de reconnaĂźtre le mouvement d'une personne dans le cadre des interactions non-verbales dans un environnement virtuel. Pour cela nous avons proposĂ© une nouvelle base de donnĂ©es de mouvement 3D capturĂ©e avec un systĂšme de capture de mouvement de haute qualitĂ© et une camĂ©ra de profondeur

    Bipartite Graph Diffusion Model for Human Interaction Generation: The generation of natural human motion interactions is a hot topic in computer vision and computer animation. It is a challenging task due to the diversity of possible human motion interactions. Diffusion models, which have already shown remarkable generative capabilities in other domains, are a good candidate for this task. In this paper, we introduce a novel bipartite graph diffusion method (BiGraphDiff) to generate human motion interactions between two persons. Specifically, bipartite node sets are constructed to model the inherent geometric constraints between skeleton nodes during interactions. The interaction graph diffusion model is transformer-based, combining some state-of-the-art motion methods. We show that the proposed achieves new state-of-the-art results on leading benchmarks for the human interaction generation task.

    No full text
    International audienceThe generation of natural human motion interactions is a hot topic in computer vision and computer animation. It is a challenging task due to the diversity of possible human motion interactions. Diffusion models, which have already shown remarkable generative capabilities in other domains, are a good candidate for this task. In this paper, we introduce a novel bipartite graph diffusion method (BiGraphDiff) to generate human motion interactions between two persons. Specifically, bipartite node sets are constructed to model the inherent geometric constraints between skeleton nodes during interactions. The interaction graph diffusion model is transformer-based, combining some state-of-theart motion methods. We show that the proposed achieves new state-of-the-art results on leading benchmarks for the human interaction generation task. Code, pre-trained models and additional results are available at https:// github.com/CRISTAL-3DSAM/BiGraphDiff

    Human Motion Prediction Using Manifold-Aware Wasserstein GAN

    No full text
    International audienceHuman motion prediction aims to forecast future human poses given a prior pose sequence. The discontinuity of the predicted motion and the performance deterioration in long-term horizons are still the main challenges encountered in current literature. In this work, we tackle these issues by using a compact manifold-valued representation of human motion. Specifically, we model the temporal evolution of the 3D human poses as trajectory, what allows us to map human motions to single points on a sphere manifold. To learn these non-Euclidean representations, we build a manifold-aware Wasserstein generative adversarial model that captures the temporal and spatial dependencies of human motion through different losses. Extensive experiments show that our approach outperforms the state-of-the-art on CMU MoCap and Human 3.6M datasets. Our qualitative results show the smoothness of the predicted motions. The pretrained models and the code are provided at the following link

    Interaction Transformer for Human Reaction Generation

    Full text link
    We address the challenging task of human reaction generation which aims to generate a corresponding reaction based on an input action. Most of the existing works do not focus on generating and predicting the reaction and cannot generate the motion when only the action is given as input. To address this limitation, we propose a novel interaction Transformer (InterFormer) consisting of a Transformer network with both temporal and spatial attentions. Specifically, the temporal attention captures the temporal dependencies of the motion of both characters and of their interaction, while the spatial attention learns the dependencies between the different body parts of each character and those which are part of the interaction. Moreover, we propose using graphs to increase the performance of the spatial attention via an interaction distance module that helps focus on nearby joints from both characters. Extensive experiments on the SBU interaction, K3HI, and DuetDance datasets demonstrate the effectiveness of InterFormer. Our method is general and can be used to generate more complex and long-term interactions

    QAP Optimisation with Reinforcement Learning for Faster Graph Matching in Sequential Semantic Image Analysis

    No full text
    International audienceThe paper addresses the fundamental task of semantic image analysis by exploiting structural information (spatial relationshipsbetween image regions). We propose to combine a deep neural network(CNN) with graph matching where graphs encode efficiently structuralinformation related to regions segmented by the CNN. Our novel approach solves the quadratic assignment problem (QAP) sequentially formatching graphs. The optimal sequence for graph matching is conveniently defined using reinforcement-learning (RL) based on the regionmembership probabilities produced by the CNN and their structural relationships. Our RL-based strategy for solving QAP sequentially allowsus to significantly reduce the combinatorial complexity for graph matching. Preliminary experiments are performed on both a synthetic datasetand a public dataset dedicated to the semantic segmentation of face images. Results show that the proposed RL-based ordering significantlyoutperforms random ordering and that our strategy is about 386 timesfaster than a global QAP-based approach while preserving similar segmentation accuracy
    corecore