329 research outputs found
Pore-scale mass and reactant transport in multiphase porous media flows
Reactive processes associated with multiphase flows play a significant role in mass transport in unsaturated porous media. For example, the effect of reactions on the solid matrix can affect the formation and stability of fingering instabilities associated with the invasion of a buoyant non-wetting fluid. In this study, we focus on the formation and stability of capillary channels of a buoyant non-wetting fluid (developed because of capillary instabilities) and their impact on the transport and distribution of a reactant in the porous medium. We use a combination of pore-scale numerical calculations based on a multiphase reactive lattice Boltzmann model (LBM) and scaling laws to quantify (i)the effect of dissolution on the preservation of capillary instabilities, (ii)the penetration depth of reaction beyond the dissolution/melting front, and (iii)the temporal and spatial distribution of dissolution/melting under different conditions (concentration of reactant in the non-wetting fluid, injection rate). Our results show that, even for tortuous non-wetting fluid channels, simple scaling laws assuming an axisymmetrical annular flow can explain (i)the exponential decay of reactant along capillary channels, (ii)the dependence of the penetration depth of reactant on a local Péclet number (using the non-wetting fluid velocity in the channel) and more qualitatively (iii)the importance of the melting/reaction efficiency on the stability of non-wetting fluid channels. Our numerical method allows us to study the feedbacks between the immiscible multiphase fluid flow and a dynamically evolving porous matrix (dissolution or melting) which is an essential component of reactive transport in porous medi
Automatic grid refinement criterion for lattice Boltzmann method
In all kinds of engineering problems, and in particular in methods for
computational fluid dynamics based on regular grids, local grid refinement is
of crucial importance. To save on computational expense, many applications
require to resolve a wide range of scales present in a numerical simulation by
locally adding more mesh points. In general, the need for a higher (or a lower)
resolution is not known a priori, and it is therefore difficult to locate areas
for which local grid refinement is required. In this paper, we propose a novel
algorithm for the lattice Boltzmann method, based on physical concepts, to
automatically construct a pattern of local refinement. We apply the idea to the
two-dimensional lid-driven cavity and show that the automatically refined grid
can lead to results of equal quality with less grid points, thus sparing
computational resources and time. The proposed automatic grid refinement
strategy has been implemented in the parallel open-source library Palabos
Pair Contact Process with Diffusion: Failure of Master Equation Field Theory
We demonstrate that the `microscopic' field theory representation, directly
derived from the corresponding master equation, fails to adequately capture the
continuous nonequilibrium phase transition of the Pair Contact Process with
Diffusion (PCPD). The ensuing renormalization group (RG) flow equations do not
allow for a stable fixed point in the parameter region that is accessible by
the physical initial conditions. There exists a stable RG fixed point outside
this regime, but the resulting scaling exponents, in conjunction with the
predicted particle anticorrelations at the critical point, would be in
contradiction with the positivity of the equal-time mean-square particle number
fluctuations. We conclude that a more coarse-grained effective field theory
approach is required to elucidate the critical properties of the PCPD.Comment: revtex, 8 pages, 1 figure include
Application of the multi distribution function lattice Boltzmann approach to thermal flows
Numerical methods able to model high Rayleigh (Ra) and high Prandtl (Pr) number thermal convection are important to study large-scale geophysical phenomena occuring in very viscous fluids such as magma chamber dynamics (104 < Pr < 107 and 107 < Ra < 1011). The important variable to quantify the thermal state of a convective fluid is a generalized dimensionless heat transfer coefficient (the Nusselt number) whose measure indicates the relative efficiency of the thermal convection. In this paper we test the ability of Multi-distribution Function approach (MDF) Thermal Lattice Boltzmann method to study the well-established scaling result for the Nusselt number (Nu ∝ Ra 1/3) in Rayleigh Bénard convection for 104 ≤ Ra ≤ 109 and 101 ≤ Pr ≤ 104. We explore its main drawbacks in the range of Pr and Ra number under investigation: (1) high computational time N c required for the algorithm to converge and (2) high spatial accuracy needed to resolve the thickness of thermal plumes and both thermal and velocity boundary layer. We try to decrease the computational demands of the method using a multiscale approach based on the implicit dependence of the Pr number on the relaxation time, the spatial and temporal resolution characteristic of the MDF thermal mode
Localization-delocalization transition of a reaction-diffusion front near a semipermeable wall
The A+B --> C reaction-diffusion process is studied in a system where the
reagents are separated by a semipermeable wall. We use reaction-diffusion
equations to describe the process and to derive a scaling description for the
long-time behavior of the reaction front. Furthermore, we show that a critical
localization-delocalization transition takes place as a control parameter which
depends on the initial densities and on the diffusion constants is varied. The
transition is between a reaction front of finite width that is localized at the
wall and a front which is detached and moves away from the wall. At the
critical point, the reaction front remains at the wall but its width diverges
with time [as t^(1/6) in mean-field approximation].Comment: 7 pages, PS fil
Local Unitary Quantum Cellular Automata
In this paper we present a quantization of Cellular Automata. Our formalism
is based on a lattice of qudits, and an update rule consisting of local unitary
operators that commute with their own lattice translations. One purpose of this
model is to act as a theoretical model of quantum computation, similar to the
quantum circuit model. It is also shown to be an appropriate abstraction for
space-homogeneous quantum phenomena, such as quantum lattice gases, spin chains
and others. Some results that show the benefits of basing the model on local
unitary operators are shown: universality, strong connections to the circuit
model, simple implementation on quantum hardware, and a wealth of applications.Comment: To appear in Physical Review
Formation of Liesegang patterns: A spinodal decomposition scenario
Spinodal decomposition in the presence of a moving particle source is
proposed as a mechanism for the formation of Liesegang bands. This mechanism
yields a sequence of band positions x_n that obeys the spacing law
x_n~Q(1+p)^n. The dependence of the parameters p and Q on the initial
concentration of the reagents is determined and we find that the functional
form of p is in agreement with the experimentally observed Matalon-Packter law.Comment: RevTex, 4 pages, 4 eps figure
- …