92 research outputs found

    Temperature-dependent structure of an intermetallic ErPd2_2Si2_2 single crystal: A combined synchrotron and in-house X-ray diffraction study

    Full text link
    We have grown intermetallic ErPd2_2Si2_2 single crystals employing laser-diodes with the floating-zone method. The temperature-dependent crystallography was determined using synchrotron and in-house X-ray powder diffraction measurements from 20 to 500 K. The diffraction patterns fit well with the tetragonal II4/mmmmmm space group (No. 139) with two chemical formulas within one unit cell. Our synchrotron X-ray powder diffraction study shows that the refined lattice constants are aa = 4.10320(2) {\AA}, cc = 9.88393(5) {\AA} at 298 K and aa = 4.11737(2) {\AA}, cc = 9.88143(5) {\AA} at 500 K, resulting in the unit-cell volume VV = 166.408(1) {\AA}3^3 (298 K) and 167.517(2) {\AA}3^3 (500 K). In the whole studied temperature range, we did not find any structural phase transition. Upon cooling, the lattice constants a and c are shortened and elongated, respectively.Comment: 5 Figures, 4 Table

    Genome-Wide Identification and Characterization of BrrTCP Transcription Factors in Brassica rapa ssp. rapa

    Get PDF
    The teosinte branched1/cycloidea/proliferating cell factor (TCP) gene family is a plant-specific transcription factor that participates in the control of plant development by regulating cell proliferation. However, no report is currently available about this gene family in turnips (Brassica rapa ssp. rapa). In this study, a genome-wide analysis of TCP genes was performed in turnips. Thirty-nine TCP genes in turnip genome were identified and distributed on 10 chromosomes. Phylogenetic analysis clearly showed that the family was classified as two clades: class I and class II. Gene structure and conserved motif analysis showed that the same clade genes have similar gene structures and conserved motifs. The expression profiles of 39 TCP genes were determined through quantitative real-time PCR. Most CIN-type BrrTCP genes were highly expressed in leaf. The members of CYC/TB1 subclade are highly expressed in flower bud and weakly expressed in root. By contrast, class I clade showed more widespread but less tissue-specific expression patterns. Yeast two-hybrid data show that BrrTCP proteins preferentially formed heterodimers. The function of BrrTCP2 was confirmed through ectopic expression of BrrTCP2 in wild-type and loss-of-function ortholog mutant of Arabidopsis. Overexpression of BrrTCP2 in wild-type Arabidopsis resulted in the diminished leaf size. Overexpression of BrrTCP2 in triple mutants of tcp2/4/10 restored the leaf phenotype of tcp2/4/10 to the phenotype of wild type. The comprehensive analysis of turnip TCP gene family provided the foundation to further study the roles of TCP genes in turnips

    Flavonoids, Phenolics, and Antioxidant Capacity in the Flower of Eriobotrya japonica Lindl.

    Get PDF
    Flavonoids and phenolics are abundant in loquat flowers. Methanol had the highest extraction efficiency among five solvents, followed by ethanol. Considering the safety and residue, ethanol is better as extraction solvent. The average content of flavonoids and phenolics of loquat flower of five cultivars were 1.59 ± 0.24 and 7.86 ± 0.87 mg/g DW, respectively, when using ethanol as extraction solvent. The contents of both bioactive components in flowers at different developmental stages and in the various flower tissues clearly differed, with the highest flavonoids and phenolics content in flowers of stage 3 (flower fully open) and petal, respectively. The antioxidant capacity was measured using FRAP, DPPH, and ABTS methods. The values of ABTS method was highest, followed by DPPH, the lowest was FRAP, when using vitamin C equivalent antioxidant capacity (VCEAC) as unit. Correlation analysis showed that the ABTS method showed the highest correlation coefficients with flavonoids and phenolics, i.e., 0.886 and 0.973, respectively

    Phenolic Composition from Different Loquat (Eriobotrya japonica Lindl.) Cultivars Grown in China and Their Antioxidant Properties

    No full text
    China is one of the most important centers of diversity for Eriobotrya japonica Lindl. in the world. In this study, seven loquat cultivars grown in China were evaluated for their phenolic compounds and antioxidant activity. Eleven phenolic compounds, i.e., 3-p-coumaroylquinincacid (3-p-CoQA), 5-caffeoylquinic acid (5-CQA), 4-caffeoylquinic acid (4-CQA), 3-caffeoylquinic acid (3-CQA), 5-feruloylquinic acid (5-FQA), quercetin-3-O-galactoside (Q-3-Gal), quercetin-3-O-glucoside (Q-3-Glu), quercetin-3-O-rhamnoside (Q-3-Rha), kaempferol-3-O-galactoside (K-3-Gal), kaempferol-3-O-rhamnoside (K-3-Rha), and kaempferol-3-O-glucoside (K-3-Glu) were identified and quantified in the peel and pulp of the cultivars tested. 3-CQA and 5-CQA were the predominant components in both fruit parts. 2,2-Diphenyl-1-picrylhydrazyl radicals (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate (ABTS), and ferric reducing antioxidant power (FRAP) assays were used for the antioxidant evaluation. Results showed that peel extracts had higher antioxidant activities than their pulp counterparts in all the cultivars tested, which was correlated with their higher total phenolic contents. The antioxidant potency composite (APC) index showed obvious variations ranging from 64.15 to 100 in the peel and from 59.49 to 97.95 in the pulp of different cultivars, where “Dahongpao” (DHP) and “Luoyangqing” (LYQ) had the highest APC index in the peel and pulp, respectively. Overall, loquat cultivars rich in hydroxycinnamic acids (HCAs) such as 3-p-CoQA, 5-CQA, 4-CQA, 3-CQA and 5-FQA showed relatively higher antioxidant activities, and may be excellent sources of phytochemicals and natural antioxidants

    The chemistry, distribution, and metabolic modifications of fruit flavonols

    Get PDF
    Fruits are considered as healthy foods because they provide a rich source of vitamins, antioxidants and other nutrients, including a range of essential bioactive flavonoid compounds. Flavonols, with diverse chemical properties and biological activities, are the most ubiquitous flavonoids that occur naturally in fruits and they are nutritionally important to animals and humans. Numerous investigations have emphasized that significant intake of dietary flavonols is associated with lower incidences of degenerative diseases. Here, we review current knowledge concerning the molecular structures, composition and distribution, regulation, and structural modification of fruit flavonols. In addition, we consider biotechnological approaches to enhance the levels of flavonols in plants or microorganism. An understanding of the factors determining production of flavonols in fruit crops will improve breeding programs and facilitate the production of fruits or bio-products with desirable contents of bioactive flavonols of benefit to humans

    Three Polymethoxyflavones Purified from Ougan (<i>Citrus reticulata</i> Cv. <i>Suavissima</i>) Inhibited LPS-Induced NO Elevation in the Neuroglia BV-2 Cell Line via the JAK2/STAT3 Pathway

    No full text
    In order to establish an efficient method for separation of polymethoxyflavones (PMFs) and explore the anti-inflammatory mechanism of PMF monomers, a citrus variety rich in PMFs, Ougan (Citrus reticulata cv. Suavissima), was selected, and three monomers, including nobiletin, tangeretin, and 5-demethylnobiletin, were purified by ultrasonic-assisted extraction, solid phase extraction, and high-speed countercurrent chromatography separation. UPLC-MS was used to identify the three monomers. UPLC determined purities of 99.87% to nobiletin, 99.76% to tangeretin, and 98.75% to 5-demethylnobiletin with the standard curve method. A lipopolysaccharide (LPS)-induced NO releasing model was performed in the mouse microglia BV-2 cell line. Results illustrated that PMF monomers inhibited the NO release and the inflammation-related cytokines, including IL-1&#946;, IL-6, and TNF&#945; elevation. QRT-PCR revealed that PMFs alleviated LPS-induced upregulation of iNOS, IL-6, JAK2, TNF&#945;, IL-1&#946;, and NF-&#954;B and LPS-induced downregulation of I&#954;B&#945;, while they did not affect TLR1, TLR2, TLR4, and TLR6. STAT3 expression was repressed by tangeretin and 5-demethylnobiletin, but not by nobiletin. Western blot assay also showed a suppression of expression and phosphorylation of JAK2 by all three PMF monomers, while STAT3 phosphorylation was restrained by tangeretin and 5-demethylnobiletin. The mechanism was primarily verified by the JAK2 inhibitor Ruxolitinib and the STAT3 inhibitor Stattic

    Comparison of Sodium Acid Sulfate and UV-C Treatment on Browning and Storage Quality of Fresh-Cut Potatoes

    No full text
    Fresh-cut vegetables, such as potato chips, get brown quickly and can easily be infected by bacterium during storage. Sodium acid sulfate (SAS) and UV-C treatments are regarded as effective methods for food preservation. In this study, the effects of SAS, UV-C treatment, and their combination on fresh-cut potatoes during storage were evaluated. Compared with the control, all of the treatments were effective in inhibiting the bacterial growth during the whole storage period. Also, both SAS and SAS + UV-C treatments significantly decreased browning and polyphenol oxidase (PPO) activity and increased the firmness and malondialdehyde (MDA) contents, while the UV-C treatment has no good effects on protecting such storage qualities in fresh-cut potatoes. However, when compared with SAS treatment, the combination of SAS and UV-C treatment did not promote the effect in protecting the storage abilities. Thus, it was concluded that SAS is a better treatment in extending shelf life and controlling the quality of fresh-cut potatoes during storage compared to UV-C treatment

    Comparative Transcriptomic Analysis of Grape Berry in Response to Root Restriction during Developmental Stages

    No full text
    Root restriction improved berry quality by being involved in diverse aspects of grapevine life. However, the molecular mechanism driving this process is not understood very well. In this study, the ‘Summer Black’ grape berry (Vitis vinifera × V. labrusca) under root restriction was investigated, which showed an increase of total soluble solids (TSS), color index of red grapes (CIRG) value, anthocyanins accumulation, total phenolics and total procyanidins contents during berry development compared with those in control berries. The transcriptomic changes induced by root restriction in ‘Summer Black’ grape over the course of berry development were analyzed by RNA-Seq method. A total of 29,971 genes were generated in ‘Summer Black’ grape berry during development, among which, 1606 genes were significantly responded to root restriction. Furthermore, 1264, 313, 141, 246 and 19 sequences were significantly changed at S1, S2, S3, S4 and S5 sample points, respectively. The gene (VIT_04s0023g02290) predicted as a salicylate O-methyltransferase was differentially expressed in all developmental stages. Gene Ontology (GO) enrichment showed that response to organic nitrogen, response to endogenous stimulus, flavonoid metabolic process, phenylpropanoid biosynthetic process and cell wall macromolecule metabolic process were the main significant differential categories. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment revealed plant–pathogen interaction, plant hormone signal transduction, flavone and flavonol biosynthesis, flavonoid biosynthesis and glucosinolate biosynthesis were the main significant differential pathways. The results of the present study provided a genetic base for the understanding of grape berry fruit quality improvement under root restriction
    corecore