5,384 research outputs found

    Improvement of dielectric loss of doped Ba0.5Sr0.5TiO3 thin films for tunable microwave devices

    Get PDF
    Al2O3-Ba0.5Sr0.5TiO3 (Al2O3-BST) thin films, with different Al2O3 contents, were deposited on (100) LaAlO3 substrate by pulsed laser deposition (PLD) technique. The Al2O3-BST films was demosnstrated to be a suitable systems to fabricate ferroelectric thin films with low dielectric loss and higher figure of merit for tunable microwave devices. Pure BST thin films were also fabricated for comparison purpose. The films' structure and morphology were analyzed by X-ray diffractiopn and scanning electron microscopy, respectively; nad showed that the surface roughness for the Al2O3-BST films increased with the Al2O3 content. Apart from that, the broadening in the intensity peak in XRD result indicating the grain size of the Al2O3-BST films reduced with the increasing of Al2O3 dopant. We measured the dielctric properties of Al2O3-BST films with a home-made non-destructive dual resonator method at frequency ~ 7.7 GHZ. The effect of doped Al2O3 into BST thin films significantly reduced the dielectric constant, dielectric loss and tunability compare to pure BST thin film. Our result shows the figure of merit (K), used to compare the films with varied dielectric properties, increased with the Al2O3 content. Therefore Al2O3-BST films show the potential to be exploited in tunable microwave devices.Comment: 8 pages, 4 figures, 1 table. Accepted & tentatively for Feb 15 2004 issue, Journal of Applied Physic

    Investigation of passive flow control techniques to enhance the stall characteristics of a microlight aircraft

    Get PDF
    This report investigates the enhancement of aerodynamic stall characteristics of a Skyranger microlight aircraft by the use of passive flow control techniques, namely vortex generators and turbulators. Each flow control device is designed and scaled to application conditions. Force balance measurements and surface oil flow visualisation are carried out on a half-model of the microlight to further investigate the nature of the flow on the aircraft with and without the flow control devices. The results indicate a clear advantage to the use of turbulators compared with vortex generators. Turbulators increased the maximum lift coefficient by 2.8%, delayed the onset of stall by increasing the critical angle by 17.6% and reduced the drag penalty at both lower (pre-stall) and higher angles of attack by 8% compared to vortex generators. With vortex generators applied, the results indicated a delayed stall with an increase in the critical angle by 2% and a reduced drag penalty at higher angles of attack

    Dynamics in a supercooled molecular liquid: Theory and Simulations

    Full text link
    We report extensive simulations of liquid supercooled states for a simple three-sites molecular model, introduced by Lewis and Wahnstr"om [L. J. Lewis and G. Wahnstr"om, Phys. Rev. E 50, 3865 (1994)] to mimic the behavior of ortho-terphenyl. The large system size and the long simulation length allow to calculate very precisely --- in a large q-vector range --- self and collective correlation functions, providing a clean and simple reference model for theoretical descriptions of molecular liquids in supercooled states. The time and wavevector dependence of the site-site correlation functions are compared with detailed predictions based on ideal mode-coupling theory, neglecting the molecular constraints. Except for the wavevector region where the dynamics is controlled by the center of mass (around 9 nm-1), the theoretical predictions compare very well with the simulation data.

    Molecular mode-coupling theory for supercooled liquids: Application to water

    Full text link
    We present mode-coupling equations for the description of the slow dynamics observed in supercooled molecular liquids close to the glass transition. The mode-coupling theory (MCT) originally formulated to study the slow relaxation in simple atomic liquids, and then extended to the analysis of liquids composed by linear molecules, is here generalized to systems of arbitrarily shaped, rigid molecules. We compare the predictions of the theory for the qq-vector dependence of the molecular nonergodicity parameters, calculated by solving numerically the molecular MCT equations in two different approximation schemes, with ``exact'' results calculated from a molecular dynamics simulation of supercooled water. The agreement between theory and simulation data supports the view that MCT succeeds in describing the dynamics of supercooled molecular liquids, even for network forming ones.Comment: 22 pages 4 figures Late

    Design and Aerodynamic Investigation of Dynamic Architecture

    Get PDF
    The effect of the spacing between adjacent building floors on the wind distribution and turbulence intensity was analysed using computational fluid dynamics in this study. Five computational models were created with floor spacing ranging from 0.8 m (benchmark) to 1.6 m. The three-dimensional Reynolds-Averaged Navier–Stokes equations along with the momentum and continuity equations were solved using the FLUENT code for obtaining the velocity and pressure field. Simulating a reference wind speed of 5.5 m/s, the findings from the study quantified that at a floor spacing of 1.6 m, the overall wind speed augmentation was 39 % which was much higher than the benchmark model (floor spacing = 0.8 m) indicating an amplification in wind speed of approximately 27 %. In addition, the results indicated a gradual reduction in turbulence kinetic energy by up to 53 % when the floor spacing was increased from 0.8 to 1.6 m. Although the concept was to integrate wind turbines into the building fabric, this study is limited to the assessment of the airflow inside the spaces of building floors which can be potentially harnessed by a vertical axis wind turbine. The findings of this work have indicated that there is a potential for integration which will lead on to future research in this area

    PT-Symmetric Electronics

    Full text link
    We show both theoretically and experimentally that a pair of inductively coupled active LRC circuits (dimer), one with amplification and another with an equivalent amount of attenuation, display all the features which characterize a wide class of non-Hermitian systems which commute with the joint parity-time PT operator: typical normal modes, temporal evolution, and scattering processes. Utilizing a Liouvilian formulation, we can define an underlying PT-symmetric Hamiltonian, which provides important insight for understanding the behavior of the system. When the PT-dimer is coupled to transmission lines, the resulting scattering signal reveals novel features which reflect the PT-symmetry of the scattering target. Specifically we show that the device can show two different behaviors simultaneously, an amplifier or an absorber, depending on the direction and phase relation of the interrogating waves. Having an exact theory, and due to its relative experimental simplicity, PT-symmetric electronics offers new insights into the properties of PT-symmetric systems which are at the forefront of the research in mathematical physics and related fields.Comment: 17 pages, 7 figure

    Effects of the littlest Higgs model with T-parity on Higgs boson production at high energy e+ee^{+}e^{-} colliders

    Get PDF
    The Higgs boson production processes e+eZHe^{+}e^{-}\to ZH, e+eνeˉνeHe^{+}e^{-}\to \bar{\nu_{e}}\nu_{e}H, and e+ettˉHe^{+}e^{-}\to t\bar{t}H are very important for studying Higgs boson properties and further testing new physics beyond the standard model(SMSM) in the high energy linear e+ee^{+}e^{-} collider(ILCILC). We estimate the contributions of the littlest Higgs model with T-parity(LHTLHT model) to these processes and find that the LHTLHT model can generate significantly corrections to the production cross sections of these processes. We expect the possible signals of the LHTLHT model can be detected via these processes in the future ILCILC experiments.Comment: 9 pages, 2 figures, references adde

    ISRM-Suggested Method for Determining the Mode I Static Fracture Toughness Using Semi-Circular Bend Specimen

    Get PDF
    The International Society for Rock Mechanics has so far developed two standard methods for the determination of static fracture toughness of rock. They used three different core based specimens and tests were to be performed on a typical laboratory compression or tension load frame. Another method to determine the mode I fracture toughness of rock using semicircular bend specimen is herein presented. The specimen is semicircular in shape and made from typical cores taken from the rock with any relative material directions noted. The specimens are tested in three-point bending using a laboratory compression test instrument. The failure load along with its dimensions is used to determine the fracture toughness. Most sedimentary rocks which are layered in structure may exhibit fracture properties that depend on the orientation and therefore measurements in more than one material direction may be necessary. The fracture toughness measurements are expected to yield a size-independent material property if certain minimum specimen size requirements are satisfied
    corecore