13 research outputs found

    Generalised optical printing of photocurable metal chalcogenides

    Get PDF
    Optical three-dimensional (3D) printing techniques have attracted tremendous attention owing to their applicability to mask-less additive manufacturing, which enables the cost-effective and straightforward creation of patterned architectures. However, despite their potential use as alternatives to traditional lithography, the printable materials obtained from these methods are strictly limited to photocurable resins, thereby restricting the functionality of the printed objects and their application areas. Herein, we report a generalised direct optical printing technique to obtain functional metal chalcogenides via digital light processing. We developed universally applicable photocurable chalcogenidometallate inks that could be directly used to create 2D patterns or micrometre-thick 2.5D architectures of various sizes and shapes. Our process is applicable to a diverse range of functional metal chalcogenides for compound semiconductors and 2D transition-metal dichalcogenides. We then demonstrated the feasibility of our technique by fabricating and evaluating a micro-scale thermoelectric generator bearing tens of patterned semiconductors. Our approach shows potential for simple and cost-effective architecturing of functional inorganic materials

    Self-assembly of matchstick-shaped inorganic nano-surfactants with controlled surface amphiphilicity

    No full text
    Molecular and nanoscale amphiphiles have been extensively studied as building blocks for organizing macroscopic matter through specific and local interactions. Among various amphiphiles, inorganic Janus nanoparticles have attracted a lot of attention owing to their ability to impart multifunctionalities, although the programmability to achieve complicated self-assembly remains a challenge. Here, we synthesized matchstick-shaped Janus nano-surfactants that mimic organic surfactant molecules and studied their programmable self-assembly. High amphiphilicity was achieved through the hard???soft acid???base-based ligand-exchange reaction with strong selectivity on the surface of nano-matchsticks consisting of Ag2S heads and CdS stems. The obtained nano-surfactants spontaneously assembled into diverse ordered structures such as lamellar, curved, wrinkled, cylindrical, and micellar structures depending on the vertical asymmetry and the interfacial tension controlled by their geometry and surface ligands. The correlation between the phase selectivity of suprastructures and the characteristics of nano-surfactants is discussed. This study realized the molecular amphiphile-like programmability of inorganic Janus nanostructures in self-assembly with the precise control on the surface chemistry

    Colloidal Suprastructures Self-Organized from Oppositely Charged All-Inorganic Nanoparticles

    No full text
    The self-organization of colloidal nanoparticles into programmed suprastructures is an important research area in various disciplines of nano, colloid, and polymer sciences. However, despite the recent advances in their fundamental understanding and practical applications, the self-organization of organic-free inorganic nanoparticles remains unexplored. Herein, we present the controlled organization of oppositely charged allinorganic nanoparticles through the electrostatic interaction and the colloidal behaviors of organized suprastructures. Depending on the charge states of the assembled suprastructures, three different phases, including patchy, patchy bridged, and fully coated particles, are identified, enabling the construction of the phase diagram with nanoparticle concentrations. Especially, the fully coated particles exhibit unexpected colloidal stability through the action of nanoparticles as surface stabilizers to induce the overcharged surface state; thus, we propose the concept of "nanoligands". It is demonstrated that this concept can be extended to a wide range of material combinations, including semiconducting, metallic, and oxide nanoparticles. The currently developed approach will enable the chemical designing of self-organized nanostructures

    Antibiotic-Related Adverse Drug Reactions at a Tertiary Care Hospital in South Korea

    No full text
    Background. Adverse drug reactions (ADRs) are any unwanted/uncomfortable effects from medication resulting in physical, mental, and functional injuries. Antibiotics account for up to 40.9% of ADRs and are associated with several serious outcomes. However, few reports on ADRs have evaluated only antimicrobial agents. In this study, we investigated antibiotic-related ADRs at a tertiary care hospital in South Korea. Methods. This is a retrospective cohort study that evaluated ADRs to antibiotics that were reported at a 2400-bed tertiary care hospital in 2015. ADRs reported by physicians, pharmacists, and nurses were reviewed. Clinical information reported ADRs, type of antibiotic, causality assessment, and complications were evaluated. Results. 1,277 (62.8%) patients were considered antibiotic-related ADRs based on the World Health Organization-Uppsala Monitoring Center criteria (certain, 2.2%; probable, 35.7%; and possible, 62.1%). Totally, 44 (3.4%) patients experienced serious ADRs. Penicillin and quinolones were the most common drugs reported to induce ADRs (both 16.0%), followed by third-generation cephalosporins (14.9%). The most frequently experienced side effects were skin manifestations (45.1%) followed by gastrointestinal disorders (32.6%). Conclusion. Penicillin and quinolones are the most common causative antibiotics for ADRs and skin manifestations were the most frequently experienced symptom

    Thiometallate precursors for the synthesis of supported Pt and PtNi nanoparticle electrocatalysts: Size-focusing by S capping

    No full text
    Herein, we report for the first time the successful preparation of thiometallate-based precursors for use in a bottom-up synthetic process of supported Pt and PtNi nanoparticle catalyst. This precursor enabled the monodisperse synthesis of supported Pt nanoparticles and the in situ formation of S, which were caught directly in a collection system by the nanoparticle synthetic processes consisting of impregnation and thermal processes. S is proven to act as a capping agent in generating highly stable nanoparticles with the size ranging from 2 nm to 3 nm and further favors the formation of monodispersed particles by solid-state digestive ripening. The proposed synthetic methodology can be applied to high-quality PtNi alloy nanoparticle systems. The current route is readily scalable, and multi-gram quantities can be prepared. The prepared carbon-supported Pt and PtNi nanoparticles were characterized as electrocatalysts for the oxygen reduction reaction and exhibited superior performance and durability to commercial Pt/C
    corecore