188 research outputs found

    Attention mechanisms and emotion judgment for Korean and American emotional faces: an eye movement study

    Get PDF
    IntroductionThis study investigates attention mechanisms and the accuracy of emotion judgment among South Korean children by employing Korean and American faces in conjunction with eye-tracking technology.MethodsA total of 42 participants were individually presented with photos featuring either Korean or American children, and their task was to judge the emotions conveyed through the facial expressions in each photo. The participants’ eye movements during picture viewing were meticulously observed using an eye tracker.ResultsThe analysis of the emotion judgment task outcomes revealed that the accuracy scores for discerning emotions of joy, sadness, and anger in Korean emotional faces were found to be significantly higher than those for American children. Conversely, no significant difference in accuracy scores was observed for the recognition of fear emotion between Korean and American faces. Notably, the study also uncovered distinct patterns of fixation duration among children, depending on whether they were viewing Korean or American faces. These patterns predominantly manifested in the three main facial areas of interest, namely the eyes, nose, and mouth.DiscussionThe observed phenomena can be best understood within the framework of the “other-race effect.” Consequently, this prototype formation leads to heightened accuracy in recognizing and interpreting emotional expressions exhibited by faces belonging to the same racial group. The present study contributes to a deeper understanding of how attention mechanisms and other-race effects impact emotion judgment among South Korean children. The utilization of eye-tracking technology enhances the validity and precision of our findings, providing valuable insights for both theoretical models of face processing and practical applications in various fields such as psychology, education, and intercultural communication

    SlAction: Non-intrusive, Lightweight Obstructive Sleep Apnea Detection using Infrared Video

    Full text link
    Obstructive sleep apnea (OSA) is a prevalent sleep disorder affecting approximately one billion people world-wide. The current gold standard for diagnosing OSA, Polysomnography (PSG), involves an overnight hospital stay with multiple attached sensors, leading to potential inaccuracies due to the first-night effect. To address this, we present SlAction, a non-intrusive OSA detection system for daily sleep environments using infrared videos. Recognizing that sleep videos exhibit minimal motion, this work investigates the fundamental question: "Are respiratory events adequately reflected in human motions during sleep?" Analyzing the largest sleep video dataset of 5,098 hours, we establish correlations between OSA events and human motions during sleep. Our approach uses a low frame rate (2.5 FPS), a large size (60 seconds) and step (30 seconds) for sliding window analysis to capture slow and long-term motions related to OSA. Furthermore, we utilize a lightweight deep neural network for resource-constrained devices, ensuring all video streams are processed locally without compromising privacy. Evaluations show that SlAction achieves an average F1 score of 87.6% in detecting OSA across various environments. Implementing SlAction on NVIDIA Jetson Nano enables real-time inference (~3 seconds for a 60-second video clip), highlighting its potential for early detection and personalized treatment of OSA.Comment: Accepted to ICCV CVAMD 2023, poste

    Production of Mutated Porcine Embryos Using Zinc Finger Nucleases and a Reporter-based Cell Enrichment System

    Get PDF
    To facilitate the construction of genetically-modified pigs, we produced cloned embryos derived from porcine fibroblasts transfected with a pair of engineered zinc finger nuclease (ZFN) plasmids to create targeted mutations and enriched using a reporter plasmid system. The reporter expresses RFP and eGFP simultaneously when ZFN-mediated site-specific mutations occur. Thus, double positive cells (RFP+/eGFP(+)) were selected and used for somatic cell nuclear transfer. Two types of reporter based enrichment systems were used in this study; the cloned embryos derived from cells enriched using a magnetic sorting-based system showed better developmental competence than did those derived from cells enriched by flow cytometry. Mutated sequences, such as insertions, deletions, or substitutions, together with the wild-type sequence, were found in the cloned porcine blastocysts. Therefore, genetic mutations can be achieved in cloned porcine embryos reconstructed with ZFN-treated cells that were enriched by a reporter-based system.

    Abolished ketamine effects on the spontaneous excitatory postsynaptic current of medial prefrontal cortex neurons in GluN2D knockout mice

    Get PDF
    Abstract Ketamine, a non-competitive antagonist of the N-methyl-d-aspartate receptor (NMDAR), generates a rapidly-acting antidepressant effect. It exerts psychomimetic effects, yet demands a further investigation of its mechanism. Previous research showed that ketamine did no longer promote hyperlocomotion in GluN2D knockout (KO) mice, which is a subunit of NMDAR. In the present study, we tested whether GluN2D-containing NMDARs participate in the physiological changes in the medial prefrontal cortex (mPFC) triggered by ketamine. Sub-anesthetic dose of ketamine (25mg/kg) elevated the frequency of spontaneous excitatory postsynaptic currents (sEPSC) in wild-type (WT) mice, but not in GluN2D KO mice, 1h after the injection. The amplitude of sEPSC and paired-pulse ratio (PPR) were unaltered by ketamine in both WT and GluN2D KO mice. These findings suggest that GluN2D-containing NMDARs might play a role in the ketamine-mediated changes in glutamatergic neurons in mPFC and, presumably, in ketamine-induced hyperlocomotion

    Deficiency of Capicua disrupts bile acid homeostasis

    Get PDF
    Capicua (CIC) has been implicated in pathogenesis of spinocerebellar ataxia type 1 and cancer in mammals; however, the in vivo physiological functions of CIC remain largely unknown. Here we show that Cic hypomorphic (Cic-L-/-) mice have impaired bile acid (BA) homeostasis associated with induction of proinflammatory cytokines. We discovered that several drug metabolism and BA transporter genes were down-regulated in Cic-L-/- liver, and that BA was increased in the liver and serum whereas bile was decreased within the gallbladder of Cic-L-/- mice. We also found that levels of proinflammatory cytokine genes were up-regulated in Cic-L-/- liver. Consistent with this finding, levels of hepatic transcriptional regulators, such as hepatic nuclear factor 1 alpha (HNF1 alpha), CCAAT/enhancer-binding protein beta (C/EBP beta), forkhead box protein A2 (FOXA2), and retinoid X receptor alpha (RXR alpha), were markedly decreased in Cic-L-/- mice. Moreover, induction of tumor necrosis factor alpha (Tnf alpha) expression and decrease in the levels of FOXA2, C/EBP beta, and RXRa were found in Cic-L-/- liver before BA was accumulated, suggesting that inflammation might be the cause for the cholestasis in Cic-L-/- mice. Our findings indicate that CIC is a critical regulator of BA homeostasis, and that its dysfunction might be associated with chronic liver disease and metabolic disorders.1

    Topical Hypopigmenting Agents for Pigmentary Disorders and Their Mechanisms of Action

    Get PDF
    Melanin is produced in melanocytes and stored in melanosomes. In spite of its beneficial sun-protective effect, abnormal accumulation of melanin results in esthetic problems. Hydroquinone, competing with tyrosine, is a major ingredient in topical pharmacological agents. However, frequent adverse reactions are amongst its major limitation. To solve this problem, several alternatives such as arbutin, kojic acid, aloesin, and 4-n-butyl resorcinol have been developed. Herein, we classify hypopigmenting agents according to their mechanism of action; a) regulation of enzyme, which is subdivided into three categories, i) regulation of transcription and maturation of tyrosinase, ii) inhibition of tyrosinase activity, and iii) post-transcriptional control of tyrosinase; b) inhibition of melanosome transfer, and c) additional mechanisms such as regulation of the melanocyte environment and antioxidant agents

    Altered presynaptic function and number of mitochondria in the medial prefrontal cortex of adult Cyfip2 heterozygous mice

    Get PDF
    Variants of the cytoplasmic FMR1-interacting protein (CYFIP) gene family, CYFIP1 and CYFIP2, are associated with numerous neurodevelopmental and neuropsychiatric disorders. According to several studies, CYFIP1 regulates the development and function of both pre- and post-synapses in neurons. Furthermore, various studies have evaluated CYFIP2 functions in the postsynaptic compartment, such as regulating dendritic spine morphology; however, no study has evaluated whether and how CYFIP2 affects presynaptic functions. To address this issue, in this study, we have focused on the presynapses of layer 5 neurons of the medial prefrontal cortex (mPFC) in adult Cyfip2 heterozygous (Cyfip2+/−) mice. Electrophysiological analyses revealed an enhancement in the presynaptic short-term plasticity induced by high-frequency stimuli in Cyfip2+/− neurons compared with wild-type neurons. Since presynaptic mitochondria play an important role in buffering presynaptic Ca2+, which is directly associated with the short-term plasticity, we analyzed presynaptic mitochondria using electron microscopic images of the mPFC. Compared with wild-type mice, the number, but not the volume or cristae density, of mitochondria in both presynaptic boutons and axonal processes in the mPFC layer 5 of Cyfip2+/− mice was reduced. Consistent with an identification of mitochondrial proteins in a previously established CYFIP2 interactome, CYFIP2 was detected in a biochemically enriched mitochondrial fraction of the mouse mPFC. Collectively, these results suggest roles for CYFIP2 in regulating presynaptic functions, which may involve presynaptic mitochondrial changes.This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea Government Ministry of Science and ICT (NRF-2018R1C1B6001235, NRF-2018M3C7A1024603, NRF-2017M3C7A1048086, and NRF-2020R1A2C3011464) and the KBRI Basic Research Programs (20-BR01-08 and 20-BR-04-01)

    The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma

    Get PDF
    We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) based on multidimensional and comprehensive characterization, including mitochondrial DNA (mtDNA) and whole genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared to other kidney cancers with more proximal origins. Combined mtDNA and gene expression analysis implicates changes in mitochondrial function as a component of the disease biology, while suggesting alternative roles for mtDNA mutations in cancers relying on oxidative phosphorylation. Genomic rearrangements lead to recurrent structural breakpoints within TERT promoter region, which correlates with highly elevated TERT expression and manifestation of kataegis, representing a mechanism of TERT up-regulation in cancer distinct from previously-observed amplifications and point mutations
    corecore