6 research outputs found

    Magnetic Constraints on Off‐Axis Seamount Volcanism in the Easternmost Segment of the Australian‐Antarctic Ridge

    No full text
    Abstract The Australian‐Antarctic Ridge (AAR) is an intermediate‐spreading rate system located between the Southeast Indian Ridge and Macquarie Triple Junction of the Australian‐Antarctic‐Pacific plates. KR1 is the easternmost and longest AAR segment and exhibits unique axial morphology and various volcanic structures. We identified three asymmetric seamount chains positioned parallel to the seafloor spreading direction, which were indicative of prevalent off‐axis volcanism in the vicinity of segment KR1. Two‐dimensional magnetic modeling was used to predict the magnetization polarity of the seamounts, as well as to constrain their formation time and duration. The magnetic modeling revealed that the majority of the examined seamounts were formed over a period of less than ∌600 kyrs. The seamount formation primarily occurred during two distinct volcanic pulses from 0.16–1.14 to 1.58–2.69 Ma. A temporal gap of 200–650 kyrs between the formation time of the seamounts and seafloor was estimated for certain seamounts that were formed much later than their underlying seafloor and at a distance of 10–20 km from the KR1 axis. Typically, such off‐axis seamount activity is related to axial mantle convection caused by excessive magma supply near the ridge crest. Considering the scale of off‐axis volcanism and thickening lithosphere ∌20 km away from the axis with intermediate‐spreading rates, small‐scale upwelling made feasible by the fertile mantle heterogeneity is proposed as the mechanism for the seamount formations at off‐axis distances, and the geochemically enriched compositions of the seamounts support this alternative explanation

    Geomorphological and Spatial Characteristics of Underwater Volcanoes in the Easternmost Australian-Antarctic Ridge

    No full text
    Underwater volcanoes and their linear distribution on the flanks of mid-ocean ridges are common submarine topographic structures at intermediate- and fast-spreading systems, where sufficient melt supplies are often available. Such magma sources beneath the seafloor located within a few kilometers of the corresponding ridge-axis tend to concentrate toward the axis during the upwelling process and contribute to seafloor formation. As a result, seamounts on the flanks of the ridge axis are formed at a distance from the spreading axis and distributed asymmetrically about the axis. In this study, we examined three linearly aligned seamount chains on the flanks of the KR1 ridge, which is the easternmost and longest Australian-Antarctic Ridge (AAR) segment. The AAR is an intermediate-spreading rate system located between the Southeast Indian Ridge and Macquarie Triple Junction of the Australian-Antarctic-Pacific plates. By inspecting the high-resolution shipboard multi-beam bathymetric data newly acquired in the study area, we detected 20 individual seamounts. The volcanic lineament runs parallel to the spreading direction of the KR1 segment. The geomorphologic parameters of height, basal area, volume, and summit types of the identified seamounts were individually measured. We also investigated the spatial distribution of the seamounts along the KR1 segment, which exhibits large variations in axial morphology with depth along the ridge axis. Based on the geomorphology and spatial distribution, all the KR1 seamounts can be divided into two groups: the subset seamounts of volcanic chains distributed along the KR1 segment characterized by high elevation and large volume, and the small seamounts distributed mostly on the western KR1. The differences in the volumetric magnitude of volcanic eruptions on the seafloor and the distance from the given axis between these two groups indicate the presence of magma sources with different origins

    The kinematic evolution of the Macquarie Plate: A case study for the fragmentation of oceanic lithosphere

    No full text
    International audienceThe tectonic evolution of the Southeast Indian Ridge (SEIR), and in particular of its easternmost edge, has not been constrained by high-resolution shipboard data and therefore the kinematic details of its behavior are uncertain. Using new shipboard magnetic data obtained by R/VIB Araon and M/V L'Astrolabe along the easternmost SEIR and available archived magnetic data, we estimated the finite rotation parameters of the Macquarie-Antarctic and Australian-Antarctic motions for eight anomalies (1o, 2, 2Ay, 2Ao, 3y, 3o, 3Ay, and 3Ao). These new finite rotations indicate that the Macquarie Plate since its creation ∌6.24 million years ago behaved as an independent and rigid plate, confirming previous estimates. The change in the Australian-Antarctic spreading direction from N-S to NW-SE appears to coincide with the formation of the Macquarie Plate at ∌6.24 Ma. Analysis of the estimated plate motions indicates that the initiation and growth stages of the Macquarie Plate resemble the kinematic evolution of other microplates and continental breakup, whereby a rapid acceleration in angular velocity took place after its initial formation, followed by a slow decay, suggesting that a decrease in the resistive strength force might have played a significant role in the kinematic evolution of the microplate. The motions of the Macquarie Plate during its growth stages may have been further enhanced by the increased subducting rates along the Hjort Trench, while the Macquarie Plate has exhibited constant growth by seafloor spreading

    Genomic Insight Into the Predominance of Candidate Phylum Atribacteria JS1 Lineage in Marine Sediments

    Get PDF
    Candidate phylum Atribacteria JS1 lineage is one of the predominant bacterial groups in anoxic subseafloor sediments, especially in organic-rich or gas hydrate-containing sediments. However, due to the lack of axenic culture representatives, metabolic potential and biogeochemical roles of this phylum have remained elusive. Here, we examined the microbial communities of marine sediments of the Ross Sea, Antarctica, and found candidate phylum Atribacteria JS1 lineage was the most abundant candidate phylum accounting for 9.8-40.8% of the bacterial communities with a single dominant operational taxonomic unit (OTU). To elucidate the metabolic potential and ecological function of this species, we applied a single-cell genomic approach and obtained 18 single-cell amplified genomes presumably from a single species that was consistent with the dominant OTU throughout the sediments. The composite genome constructed by co-assembly showed the highest genome completeness among available Atribacteria JS1 genomes. Metabolic reconstruction suggested fermentative potential using various substrates and syntrophic acetate oxidation coupled with hydrogen or formate scavenging methanogens. This metabolic potential supports the predominance of Atribacteria JS1 in anoxic environments expanding our knowledge of the ecological function of this uncultivated group.
    corecore