1,619 research outputs found

    Exponential lower bound on the highest fidelity achievable by quantum error-correcting codes

    Full text link
    On a class of memoryless quantum channels which includes the depolarizing channel, the highest fidelity of quantum error-correcting codes of length n and rate R is proven to be lower bounded by 1-exp[-nE(R)+o(n)] for some function E(R). The E(R) is positive below some threshold R', which implies R' is a lower bound on the quantum capacity.Comment: Ver.4. In vers.1--3, I claimed Theorem 1 for general quantum channels. Now I claim this only for a slight generalization of depolarizing channel in this paper because Lemma 2 in vers.1--3 was wrong; the original general statement is proved in quant-ph/0112103. Ver.5. Text sectionalized. Appeared in PRA. The PRA article is typographically slightly crude: The LaTeX symbol star, used as superscripts, was capriciously replaced by the asterisk in several places after my proof readin

    Structure formation in binary colloids

    Full text link
    A theoretical study of the structure formation observed very recently [Phys. Rev. Lett. 90, 128303 (2003)] in binary colloids is presented. In our model solely the dipole-dipole interaction of the particles is considered, electrohidrodynamic effects are excluded. Based on molecular dynamics simulations and analytic calculations we show that the total concentration of the particles, the relative concentration and the relative dipole moment of the components determine the structure of the colloid. At low concentrations the kinetic aggregation of particles results in fractal structures which show a crossover behavior when increasing the concentration. At high concentration various lattice structures are obtained in a good agreement with experiments.Comment: revtex, 4 pages, figures available from authors due to size problem

    Dislocation-induced spin tunneling in Mn-12 acetate

    Full text link
    Comprehensive theory of quantum spin relaxation in Mn-12 acetate crystals is developed, that takes into account imperfections of the crystal structure and is based upon the generalization of the Landau-Zener effect for incoherent tunneling from excited energy levels. It is shown that linear dislocations at plausible concentrations provide the transverse anisotropy which is the main source of tunneling in Mn-12. Local rotations of the easy axis due to dislocations result in a transverse magnetic field generated by the field applied along the c-axis of the crystal, which explains the presence of odd tunneling resonances. Long-range deformations due to dislocations produce a broad distribution of tunnel splittings. The theory predicts that at subkelvin temperatures the relaxation curves for different tunneling resonances can be scaled onto a single master curve. The magnetic relaxation in the thermally activated regime follows the stretched-exponential law with the exponent depending on the field, temperature, and concentration of defects.Comment: 17 pages, 14 figures, 1 table, submitted to PR

    Gravitational couplings of charged leptons in a medium

    Get PDF
    We calculate the leading order matter-induced corrections to the gravitational interactions of charged leptons and their antiparticles in a medium that contains electrons but not the other charged leptons, such as normal matter. The gravitational coupling, which is universal at the tree level, is found to be flavor-dependent, and also different for the corresponding antiparticles, when the corrections of O(α)O(\alpha) are taken into account. General expressions are obtained for the matter-induced corrections to the gravitational mass in a generic matter background, and explicit formulas for those corrections are given in terms of the macroscopic parameters of the medium for particular conditions of the background gases.Comment: Latex, axodraw, 39 pages. Added a few stylistic corrections and clarifying statements in the treatment of the photon tadpole diagra

    Splitting of the pi - rho spectrum in a renormalized light-cone QCD-inspired model

    Get PDF
    We show that the splitting between the light pseudo-scalar and vector meson states is due to the strong short-range attraction in the ^1S_0 sector which makes the pion and the kaon light particles. We use a light-cone QCD-inspired model of the mass squared operator with harmonic confinement and a Dirac-delta interaction. We apply a renormalization method to define the model, in which the pseudo-scalar ground state mass fixes the renormalized strength of the Dirac-delta interaction.Comment: 9 pages, 2 figures, revtex, accepted by Phys. Rev. D; Corrected typo

    The K^*_0(800) scalar resonance from Roy-Steiner representations of pi K scattering

    Get PDF
    We discuss the existence of the light scalar meson K^*_0(800) (also called kappa) in a rigorous way, by showing the presence of a pole in the pi K --> pi K amplitude on the second Riemann sheet. For this purpose, we study the domain of validity of two classes of Roy-Steiner representations in the complex energy plane. We prove that one of them is valid in a region sufficiently broad in the imaginary direction. From this representation, we compute the l=0 partial wave in the complex plane with neither additional approximation nor model dependence, relying only on experimental data. A scalar resonance with strangeness S=1 is found with the following mass and width: E_kappa = 658 \pm 13 MeV and Gamma_kappa = 557 \pm 24 MeV.Comment: 16 pages, 8 figures. Domain of validity of a Roy-Steiner representation corrected and enlarged, and features of the K^*_0(800) pole discussed in more details. Conclusions unchange

    Effect of disorder in MgB2 thin films

    Get PDF
    We report on scanning tunneling spectroscopy studies of magnesium diboride (MgB2) thin films grown by different techniques. The films have critical temperatures ranging between 28 and 41 K with very different upper critical fields. We find that the superconducting gap associated with the sigma band decreases almost linearly with decreasing critical temperature while the gap associated with the pi band is only very weakly affected in the range of critical temperatures above 30 K. In the sample with the lowest critical temperature (28 K) we observe a small increase of the pi gap that can only be explained in terms of an increase in the interband scattering. The tunneling data was analyzed in the framework of the two-band model. The magnetic-field-dependent tunneling spectra and the upper critical field measurements of these disordered samples can be consistently explained in terms of an increase of disorder that mostly affects the pi band in samples with reduced critical temperatures

    Semiconductive and Photoconductive Properties of the Single Molecule Magnets Mn12_{12}-Acetate and Fe8_8Br8_8

    Full text link
    Resistivity measurements are reported for single crystals of Mn12_{12}-Acetate and Fe8_8Br8_8. Both materials exhibit a semiconductor-like, thermally activated behavior over the 200-300 K range. The activation energy, EaE_a, obtained for Mn12_{12}-Acetate was 0.37 ±\pm 0.05 eV, which is to be contrasted with the value of 0.55 eV deduced from the earlier reported absorption edge measurements and the range of 0.3-1 eV from intramolecular density of states calculations, assuming 2Ea2E_a= EgE_g, the optical band gap. For Fe8_8Br8_8, EaE_a was measured as 0.73 ±\pm 0.1 eV, and is discussed in light of the available approximate band structure calculations. Some plausible pathways are indicated based on the crystal structures of both lattices. For Mn12_{12}-Acetate, we also measured photoconductivity in the visible range; the conductivity increased by a factor of about eight on increasing the photon energy from 632.8 nm (red) to 488 nm (blue). X-ray irradiation increased the resistivity, but EaE_a was insensitive to exposure.Comment: 7 pages, 8 figure
    • …
    corecore