3,191 research outputs found
Catecholamines Inhibit Gastric Epithelial [RGM-1] Cell Proliferation via Beta Adrenoceptors
Catecholamines have been implicated in the modulation of normal cell growth, exerting inhibitory or excitatory control depending on the cell type. However, there is a dearth of information on the role of adrenergic mediators in gastric cell proliferation. In the present study, the effects of adrenaline (ADR) and noradrenaline (NOR) on mucosal cell growth and the cell cycle were evaluated in vitro using a normal rat gastric mucosal cell line RGM-1. Cell proliferation was assessed using [3H]-thymidine incorporation and cell cycle patterns were determined by DNA labeling with propidium iodide and flow cytometric quantification. The expressions of adrenoceptors in RGM-1 were determined by Western blot. ADR (0.01 - 10microM) and NOR (0.01 - 10microM) inhibited the growth of RGM-1 cells in a concentration-dependent manner. Pre-treatment of cells with ADR and NOR also inhibited the proliferation stimulated by epidermal growth factor (EGF). Neither phentolamine (non-selective alpha-adrenergic blocker), methoxamine (alpha1-selective agonist) nor clonidine (alpha2-selective agonist) significantly affected the inhibition of cell proliferation produced by ADR and NOR. Propranolol (non-selective beta-adrenergic blocker) and butoxamine (selective beta2-adrenergic blocker) significantly (but not totally) reversed the inhibitory action of ADR on cell proliferation. Furthermore, procaterol (selective beta-2 agonist) but not dobutamine (selective beta-1 agonist) had effects similar to those produced by ADR and NOR. Exposure of RGM-1 cells to both ADR and NOR caused significant inhibition of the G1 - S cycle progression as evidenced by the higher percentage of the G0/G1 phase and a decreased S- phase. This effect was blocked by pre-treatment with propranolol but not phentolamine These results indicate that catecholamines inhibit the proliferation of RGM-1 cells probably partly through beta-2 receptors. ©Physiological Society of Nigeria.published_or_final_versio
KACC: An identification and characterization for microbial resources in Korea
Korean Agricultural Culture Collection (KACC) is an authorized organizer and the official depository for microbial resources in Korea. The KACC has developed a web-based database system to provide integrated information about microbial resources. It includes not only simple text information onindividual microbe but also morphological images and DNA sequence data for the strain. The KACC now provides the characterization information which maintains 7,433 cultures of microorganisms including 2,687 strains of bacteria, 3535 fungi, 476 actinomycetes, 64 yeasts, and 671 others (mushrooms, gene clones, etc)
Crystallization and preliminary X-ray crystallographic analysis of SEDL
SEDL (known also as sedlin) is a 140 amino-acid protein with a putative role in endoplasmic reticulum-to-Golgi transport. Several missense mutations and deletion mutations in the SEDL gene, which result in protein truncation by frame shift, are responsible for spondyloepiphyseal dysplasia tarda, a progressive skeletal disorder. The protein is identical to MIP-2A, which was shown to interact physically with c-myc promotor-binding protein 1 (MBP-1) and relieve the regulatory role of MBP-1 as a general transcription repressor. In order to gain insights into the function of SEDL by structural analysis, the protein was overexpressed and crystallized as a first step. SEDL was overexpressed in Escherichia coli and crystallized using the hanging-drop vapour-diffusion method at 298 K. The crystals belong to the orthorhombic space group C2221, with unit-cell parameters a = 46.69, b = 101.30, c = 66.15 A. The unit cell is likely to contain one molecule of SEDL, with a crystal volume per protein mass (VM) of 2.36 A3 Da-1 and a solvent content of about 47.9% by volume. A native data set to 2.8 A resolution was obtained from a flash-cooled crystal using synchrotron radiation.open1
Tailoring ferromagnetic chalcopyrites
If magnetic semiconductors are ever to find wide application in real
spintronic devices, their magnetic and electronic properties will require
tailoring in much the same way that band gaps are engineered in conventional
semiconductors. Unfortunately, no systematic understanding yet exists of how,
or even whether, properties such as Curie temperatures and band gaps are
related in magnetic semiconductors. Here we explore theoretically these and
other relationships within 64 members of a single materials class, the Mn-doped
II-IV-V2 chalcopyrites, three of which are already known experimentally to be
ferromagnetic semiconductors. Our first-principles results reveal a variation
of magnetic properties across different materials that cannot be explained by
either of the two dominant models of ferromagnetism in semiconductors. Based on
our results for structural, electronic, and magnetic properties, we identify a
small number of new stable chalcopyrites with excellent prospects for
ferromagnetism.Comment: 6 pages with 4 figures, plus 3 supplementary figures; to appear in
Nature Material
Eccrine porocarcinoma of the head: An important differential diagnosis in the elderly patient
Background: Eccrine porocarcinoma is a rare malignant tumor of the sweat gland, characterized by a broad spectrum of clinicopathologic presentations. Surprisingly, unlike its benign counterpart eccrine poroma, eccrine porocarcinoma is seldom found in areas with a high density of eccrine sweat glands, like the palms or soles. Instead, eccrine porocarcinoma frequently occurs on the lower extremities, trunk and abdomen, but also on the head, resembling various other skin tumors, as illustrated in the patients described herein. Observations: We report 5 cases of eccrine porocarcinoma of the head. All patients were initially diagnosed as having epidermal or melanocytic skin tumors. Only after histopathologic examination were they classified as eccrine porocarcinoma, showing features of epithelial tumors with abortive ductal differentiation. Characteristic clinical, histopathologic and immunohistochemical findings of eccrine porocarcinomas are illustrated. Conclusion: Eccrine porocarcinomas are potentially fatal adnexal malignancies, in which extensive metastatic dissemination may occur. Porocarcinomas are commonly overlooked, or misinterpreted as squamous or basal cell carcinomas as well as other common malignant and even benign skin tumors. Knowledge of the clinical pattern and histologic findings, therefore, is crucial for an early therapeutic intervention, which can reduce the risk of tumor recurrence and serious complications. Copyright (c) 2008 S. Karger AG, Basel
Goldstini
Supersymmetric phenomenology has been largely bound to the hypothesis that
supersymmetry breaking originates from a single source. In this paper, we relax
this underlying assumption and consider a multiplicity of sectors which
independently break supersymmetry, thus yielding a corresponding multiplicity
of goldstini. While one linear combination of goldstini is eaten via the
super-Higgs mechanism, the orthogonal combinations remain in the spectrum as
physical degrees of freedom. Interestingly, supergravity effects induce a
universal tree-level mass for the goldstini which is exactly twice the
gravitino mass. Since visible sector fields can couple dominantly to the
goldstini rather than the gravitino, this framework allows for substantial
departures from conventional supersymmetric phenomenology. In fact, this even
occurs when a conventional mediation scheme is augmented by additional
supersymmetry breaking sectors which are fully sequestered. We discuss a number
of striking collider signatures, including various novel decay modes for the
lightest observable-sector supersymmetric particle, gravitinoless
gauge-mediated spectra, and events with multiple displaced vertices. We also
describe goldstini cosmology and the possibility of goldstini dark matter.Comment: 14 pages, 7 figures; references adde
Triad3a induces the degradation of early necrosome to limit RipK1-dependent cytokine production and necroptosis.
Understanding the molecular signaling in programmed cell death is vital to a practical understanding of inflammation and immune cell function. Here we identify a previously unrecognized mechanism that functions to downregulate the necrosome, a central signaling complex involved in inflammation and necroptosis. We show that RipK1 associates with RipK3 in an early necrosome, independent of RipK3 phosphorylation and MLKL-induced necroptotic death. We find that formation of the early necrosome activates K48-ubiquitin-dependent proteasomal degradation of RipK1, Caspase-8, and other necrosomal proteins. Our results reveal that the E3-ubiquitin ligase Triad3a promotes this negative feedback loop independently of typical RipK1 ubiquitin editing enzymes, cIAPs, A20, or CYLD. Finally, we show that Triad3a-dependent necrosomal degradation limits necroptosis and production of inflammatory cytokines. These results reveal a new mechanism of shutting off necrosome signaling and may pave the way to new strategies for therapeutic manipulation of inflammatory responses
A systems approach to prion disease
Prions cause transmissible neurodegenerative diseases and replicate by conformational conversion of normal benign forms of prion protein (PrPC) to disease-causing PrPSc isoforms. A systems approach to disease postulates that disease arises from perturbation of biological networks in the relevant organ. We tracked global gene expression in the brains of eight distinct mouse strain–prion strain combinations throughout the progression of the disease to capture the effects of prion strain, host genetics, and PrP concentration on disease incubation time. Subtractive analyses exploiting various aspects of prion biology and infection identified a core of 333 differentially expressed genes (DEGs) that appeared central to prion disease. DEGs were mapped into functional pathways and networks reflecting defined neuropathological events and PrPSc replication and accumulation, enabling the identification of novel modules and modules that may be involved in genetic effects on incubation time and in prion strain specificity. Our systems analysis provides a comprehensive basis for developing models for prion replication and disease, and suggests some possible therapeutic approaches
- …