47,015 research outputs found
Radiative Transitions in Heavy Mesons in a Relativistic Quark Model
The radiative decays of , , and other excited heavy mesons are
analyzed in a relativistic quark model for the light degrees of freedom and in
the limit of heavy quark spin-flavor symmetry. The analysis of strong decays
carried out in the corresponding chiral quark model is used to calculate the
strong decays and determine the branching ratios of the radiative decays.
Consistency with the observed branching ratios requires the inclusion of the
heavy quark component of the electromagnetic current and the introduction of an
anomalous magnetic moment for the light quark. It is observed that not only
, but also meson transitions within a heavy quark spin multiplet are
affected by the presence of the heavy quark current.Comment: 9 pages, RevTeX. Submitted to Physical Review
QCD effective action with a most general homogeneous field background
We consider one-loop effective action of SU(3) QCD with a most general
constant chromomagnetic (chromoelectric) background which has two independent
Abelian field components. The effective potential with a pure magnetic
background has a local minimum only when two Abelian components H_{\mu\nu}^3
and H_{\mu\nu}^8 of color magnetic field are orthogonal to each other. The
non-trivial structure of the effective action has important implication in
estimating quark-gluon production rate and p_T-distribution in quark-gluon
plasma. In general the production rate depends on three independent Casimir
invariants, in particular, it depends on the relative orientation between
chromoelectric fields.Comment: 6 pages, 3 figures (9 pages in published version
Oblique DLCQ M-theory and Multiple M2-branes
We propose an oblique DLCQ as a limit to realize a theory of multiple
M2-branes in M(atrix)-theory context. The limit is a combination of an infinite
boosting of a space-like circle and a tuned tilting of the circle direction. We
obtain a series of supergravity solutions describing various dual
configurations including multiple M2-branes. For an infinite boosting along a
circle wrapped obliquely around a rectangular torus, Seiberg's DLCQ limit
distorts the torus modulus. In the context of supergravity, we show explicitly
how this torus modulus of -theory is realized as the
vacuum modulus of dual IIB-theory.Comment: v3: 25pages, extended version, References adde
Strong and Electromagnetic Decays of Two New Baryons
Two recently discovered excited charm baryons are studied within the
framework of Heavy Hadron Chiral Perturbation Theory. We interpret these new
baryons which lie 308 \MeV and 340 \MeV above the as
members of a P-wave spin doublet. Differential and total decay rates for their
double pion transitions down to the ground state are calculated.
Estimates for their radiative decay rates are also discussed. We find that the
experimentally determined characteristics of the baryons may be
simply understood in the effective theory.Comment: 16 pages with 4 figures not included but available upon request,
CALT-68-191
Local Ranking Problem on the BrowseGraph
The "Local Ranking Problem" (LRP) is related to the computation of a
centrality-like rank on a local graph, where the scores of the nodes could
significantly differ from the ones computed on the global graph. Previous work
has studied LRP on the hyperlink graph but never on the BrowseGraph, namely a
graph where nodes are webpages and edges are browsing transitions. Recently,
this graph has received more and more attention in many different tasks such as
ranking, prediction and recommendation. However, a web-server has only the
browsing traffic performed on its pages (local BrowseGraph) and, as a
consequence, the local computation can lead to estimation errors, which hinders
the increasing number of applications in the state of the art. Also, although
the divergence between the local and global ranks has been measured, the
possibility of estimating such divergence using only local knowledge has been
mainly overlooked. These aspects are of great interest for online service
providers who want to: (i) gauge their ability to correctly assess the
importance of their resources only based on their local knowledge, and (ii)
take into account real user browsing fluxes that better capture the actual user
interest than the static hyperlink network. We study the LRP problem on a
BrowseGraph from a large news provider, considering as subgraphs the
aggregations of browsing traces of users coming from different domains. We show
that the distance between rankings can be accurately predicted based only on
structural information of the local graph, being able to achieve an average
rank correlation as high as 0.8
The phase-dependent Infrared brightness of the extrasolar planet upsilon Andromedae b
The star upsilon Andromeda is orbited by three known planets, the innermost
of which has an orbital period of 4.617 days and a mass at least 0.69 that of
Jupiter. This planet is close enough to its host star that the radiation it
absorbs overwhelms its internal heat losses. Here we present the 24 micron
light curve of this system, obtained with the Spitzer Space Telescope. It shows
a clear variation in phase with the orbital motion of the innermost planet.
This is the first demonstration that such planets possess distinct hot
substellar (day) and cold antistellar (night) faces.Comment: "Director's cut" of paper to appear in Science, 27 October, 200
Abelian Dominance in Wilson Loops
It has been conjectured that the Abelian projection of QCD is responsible for
the confinement of color. Using a gauge independent definition of the Abelian
projection which does {\it not} employ any gauge fixing, we provide a strong
evidence for the Abelian dominance in Wilson loop integral. In specific we
prove that the gauge potential which contributes to the Wilson loop integral is
precisely the one restricted by the Abelian projection.Comment: 4 pages, no figure, revtex. Phys. Rev. D in pres
Broken-Symmetry Unrestricted Hybrid Density Functional Calculations on Nickel Dimer and Nickel Hydride
In the present work we investigate the adequacy of broken-symmetry
unrestricted density functional theory (DFT) for constructing the potential
energy curve of nickel dimer and nickel hydride, as a model for larger bare and
hydrogenated nickel cluster calculations. We use three hybrid functionals: the
popular B3LYP, Becke's newest optimized functional Becke98, and the simple
FSLYP functional (50% Hartree-Fock and 50% Slater exchange and LYP
gradient-corrected correlation functional) with two basis sets: all-electron
(AE) Wachters+f basis set and Stuttgart RSC effective core potential (ECP) and
basis set.
We find that, overall, the best agreement with experiment, comparable to that
of the high-level CASPT2, is obtained with B3LYP/AE, closely followed by
Becke98/AE and Becke98/ECP. FSLYP/AE and B3LYP/ECP give slightly worse
agreement with experiment, and FSLYP/ECP is the only method among the ones we
studied that gives an unaceptably large error, underestimating the dissociation
energy of nickel dimer by 28%, and being in the largest disagreement with the
experiment and the other theoretical predictions.Comment: 17 pages, 7 tables, 7 figures; submitted to J. Chem. Phys.;
Revtex4/LaTeX2e. v2 (8/5/04): New (and better) ECP results, without charge
density fitting (which was found to give large errors). Subtracted the
relativistic corrections from all experimental value
Frozen light in photonic crystals with degenerate band edge
Consider a plane monochromatic wave incident on a semi-infinite periodic
structure. What happens if the normal component of the transmitted wave group
velocity vanishes? At first sight, zero normal component of the transmitted
wave group velocity simply implies total reflection of the incident wave. But
we demonstrate that total reflection is not the only possible outcome. Instead,
the transmitted wave can appear in the form of a frozen mode with very large
diverging amplitude and either zero, or purely tangential energy flux. The
field amplitude in the transmitted wave can exceed that of the incident wave by
several orders of magnitude. There are two qualitatively different kinds of
frozen mode regime. The first one is associated with a stationary inflection
point of electromagnetic dispersion relation. This phenomenon has been analyzed
in our previous publications. Now, our focus is on the frozen mode regime
related to a degenerate photonic band edge. An advantage of this new phenomenon
is that it can occur in much simpler periodic structures. This spectacular
effect is extremely sensitive to the frequency and direction of propagation of
the incident plane wave. These features can be very attractive in a variety
practical applications, such as higher harmonic generation and wave mixing,
light amplification and lasing, highly efficient superprizms, etc
Magnetic Moments of Heavy Baryons
First non-trivial chiral corrections to the magnetic moments of triplet (T)
and sextet (S^(*)) heavy baryons are calculated using Heavy Hadron Chiral
Perturbation Theory. Since magnetic moments of the T-hadrons vanish in the
limit of infinite heavy quark mass (m_Q->infinity), these corrections occur at
order O(1/(m_Q \Lambda_\chi^2)) for T-baryons while for S^(*)-baryons they are
of order O(1/\Lambda_\chi^2). The renormalization of the chiral loops is
discussed and relations among the magnetic moments of different hadrons are
provided. Previous results for T-baryons are revised.Comment: 11 Latex pages, 2 figures, to be published in Phys.Rev.
- âŠ