1,865 research outputs found

    Vertically aligned InGaN nanowires with engineered axial In composition for highly efficient visible light emission.

    Get PDF
    We report on the fabrication of novel InGaN nanowires (NWs) with improved crystalline quality and high radiative efficiency for applications as nanoscale visible light emitters. Pristine InGaN NWs grown under a uniform In/Ga molar flow ratio (UIF) exhibited multi-peak white-like emission and a high density of dislocation-like defects. A phase separation and broad emission with non-uniform luminescent clusters were also observed for a single UIF NW investigated by spatially resolved cathodoluminescence. Hence, we proposed a simple approach based on engineering the axial In content by increasing the In/Ga molar flow ratio at the end of NW growth. This new approach yielded samples with a high luminescence intensity, a narrow emission spectrum, and enhanced crystalline quality. Using time-resolved photoluminescence spectroscopy, the UIF NWs exhibited a long radiative recombination time (Ï„r) and low internal quantum efficiency (IQE) due to strong exciton localization and carrier trapping in defect states. In contrast, NWs with engineered In content demonstrated three times higher IQE and a much shorter Ï„r due to mitigated In fluctuation and improved crystal quality

    Soil-Pile Interaction Analysis using FE-BE Coupling in Frequency Domain

    Get PDF
    In this study, a numerical method for soil-pile interaction problems in multi-layered half-plane is developed in frequency domain using FE-BE coupling technique. The soil-pile interaction system is divided into two parts, so-called near field and far field. In the near field, beam elements are used for modeling pile and plane-strain finite elements for surrounding soil media. Also, a superstructure is considered as a lumped mass on a pile. In the far field, layered soil media is modeled by boundary element formulation using the dynamic fundamental solution. Then, these two fields are assembled using FE-BE coupling technique. This coupled numerical method automatically satisfies the radiation conditions because the far field boundary element formulation can handle the radiation conditions in a half plane. Additionally, the difference of relative displacement at the interface between soil and pile is considered by applying interface spring elements. In order to verify the proposed method for soil-pile interaction system, the dynamic responses of a pile in a multi-layered half-plane are performed and the numerical results are compared with the measured values from experiments. It is shown that the developed method can be an efficient numerical tool to solve the dynamic response of a pile buried in a multi-layered half plane

    Insight into highly conserved H1 subtype-specific epitopes in influenza virus hemagglutinin

    Get PDF
    Influenza viruses continuously undergo antigenic changes with gradual accumulation of mutations in hemagglutinin (HA) that is a major determinant in subtype specificity. The identification of conserved epitopes within specific HA subtypes gives an important clue for developing new vaccines and diagnostics. We produced and characterized nine monoclonal antibodies that showed significant neutralizing activities against H1 subtype influenza viruses, and determined the complex structure of HA derived from a 2009 pandemic virus A/Korea/01/2009 (KR01) and the Fab fragment from H1-specific monoclonal antibody GC0587. The overall structure of the complex was essentially identical to the previously determined KR01 HA-Fab0757 complex structure. Both Fab0587 and Fab0757 recognize readily accessible head regions of HA, revealing broadly shared and conserved antigenic determinants among H1 subtypes. The beta-strands constituted by Ser110-Glu115 and Lys169-Lys170 form H1 epitopes with distinct conformations from those of H1 and H3 HA sites. In particular, Glu112, Glu115, Lys169, and Lys171 that are highly conserved among H1 subtype HAs have close contacts with HCDR3 and LCDR3. The differences between Fab0587 and Fab0757 complexes reside mainly in HCDR3 and LCDR3, providing distinct antigenic determinants specific for 1918 pdm influenza strain. Our results demonstrate a potential key neutralizing epitope important for H1 subtype specificity in influenza virus

    Inferior Turbinate Surgery in Sleep-Disordered Breathing Patients with Nasal Obstruction: Principles and Various Techniques

    Get PDF
    Sleep-disordered breathing (SDB) is characterized by the intermittent narrowing or collapse of the upper airway, including the nasal cavity, pharynx, and larynx during sleep. Nasal obstruction is one of the most frequent presenting symptoms in SDB patients, and therefore, medical treatments such as saline nasal irrigation, antihistamine, and topical nasal spray are the first recommendation. If the issue is not resolved, surgical treatments for nasal congestion are helpful in order to alleviate nasal obstruction, reduce snoring, and improve positive airway pressure compliance. Inferior turbinate surgery is one of the most commonly performed nasal surgeries (e.g., endoscopic sinus surgery, septoplasty, etc) used to improve nasal obstruction. There are various inferior turbinate surgical methods including electrocautery, laser-assisted turbinoplasty, radiofrequency-assisted turbinoplasty, outfracture, submucous turbinoplasty, partial turbinectomy, and microdebrider-assisted turbinoplasty. Despite the development of these numerous approaches, no clear guidelines exist as yet to help determine the most appropriate modality for any individual patient. This is due to variation in pathophysiology and the degree and extent of the turbinate hypertrophy between patients. Consequently, a comprehensive understanding of these techniques, as well as the preservative concept of functional nasal physiology, is critically important for all surgeons. We propose that the ideal inferior turbinate surgery would meet the following criteria: 1) be less invasive, 2) incorporate remodeling rather than excessive resection, 3) entail a submucosal versus superficial mucosal technique, 4) represent an individually selected technique that is best suited to the patient, and 5) address long term considerations rather than acute symptomatic relief

    Electronic structures of hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films

    Full text link
    We investigated the electronic structure of multiferroic hexagonal RMnO3 (R = Gd, Tb, Dy, and Ho) thin films using both optical spectroscopy and first-principles calculations. Using artificially stabilized hexagonal RMnO3, we extended the optical spectroscopic studies on the hexagonal multiferroic manganite system. We observed two optical transitions located near 1.7 eV and 2.3 eV, in addition to the predominant absorption above 5 eV. With the help of first-principles calculations, we attribute the low-lying optical absorption peaks to inter-site transitions from the oxygen states hybridized strongly with different Mn orbital symmetries to the Mn 3d3z2-r2 state. As the ionic radius of the rare earth ion increased, the lowest peak showed a systematic increase in its peak position. We explained this systematic change in terms of a flattening of the MnO5 triangular bipyramid
    • …
    corecore