119 research outputs found

    Advancement of non-destructive spectral measurements for the quality of major tropical fruits and vegetables: a review

    Get PDF
    The quality of tropical fruits and vegetables and the expanding global interest in eating healthy foods have resulted in the continual development of reliable, quick, and cost-effective quality assurance methods. The present review discusses the advancement of non-destructive spectral measurements for evaluating the quality of major tropical fruits and vegetables. Fourier transform infrared (FTIR), Near-infrared (NIR), Raman spectroscopy, and hyperspectral imaging (HSI) were used to monitor the external and internal parameters of papaya, pineapple, avocado, mango, and banana. The ability of HSI to detect both spectral and spatial dimensions proved its efficiency in measuring external qualities such as grading 516 bananas, and defects in 10 mangoes and 10 avocados with 98.45%, 97.95%, and 99.9%, respectively. All of the techniques effectively assessed internal characteristics such as total soluble solids (TSS), soluble solid content (SSC), and moisture content (MC), with the exception of NIR, which was found to have limited penetration depth for fruits and vegetables with thick rinds or skins, including avocado, pineapple, and banana. The appropriate selection of NIR optical geometry and wavelength range can help to improve the prediction accuracy of these crops. The advancement of spectral measurements combined with machine learning and deep learning technologies have increased the efficiency of estimating the six maturity stages of papaya fruit, from the unripe to the overripe stages, with F1 scores of up to 0.90 by feature concatenation of data developed by HSI and visible light. The presented findings in the technological advancements of non-destructive spectral measurements offer promising quality assurance for tropical fruits and vegetables

    Application of Fourier Transform Near-Infrared (FT-NIR) and Fourier Transform Infrared (FT-IR) Spectroscopy Coupled with Wavelength Selection for Fast Discrimination of Similar Color of Tuber Flours

    Get PDF
    This research aimed at providing a fast and accurate method in discriminating tuber flours having similar color by using Fourier transform near-infrared (FT-NIR) and Fourier transform infrared (FT-IR) spectroscopy in order to minimize misclassification if using human eye or avoid adulteration. Reflectance spectra of three types of tubers (consisted of Canna edulis, modified cassava, and white sweet potato) were collected to develop a multivariate model of partial least-squares discriminant analysis (PLS-DA). Several spectra preprocessing methods were applied to obtain the best calibration and prediction model, while variable importance in the projection (VIP) wavelength selection method was used to reduce variables in developing the model. The PLS-DA model achieved 100% accuracy in predicting all types of flours, both for FT-NIR and FT-IR. The model was also able to discriminate all flours with coefficient of determination (R2) of 0.99 and a standard error of prediction (SEP) of 0.03% by using 1st Savitzky Golay (SG) derivative method for the FT-NIR data, as well as R2 of 0.99 and SEP of 0.08% by using 1st Savitzky Golay (SG) derivative method for the FT-IR data. By applying the VIP method, the variables were reduced from 1738 to 608 variables with R2 of 0.99 and SEP of 0.09% for FT IR and from 1557 to 385 variables with R2 of 0.99 and SEP of 0.05% for FT NIR

    Elucidation of Akkermansia muciniphila Probiotic Traits Driven by Mucin Depletion

    Get PDF
    Akkermansia muciniphila is widely considered a next-generation beneficial microbe. This bacterium resides in the mucus layer of its host and regulates intestinal homeostasis and intestinal barrier integrity by affecting host signaling pathways. However, it remains unknown how the expression of genes encoding extracellular proteins is regulated in response to dynamic mucosal environments. In this study, we elucidated the effect of mucin on the gene expression and probiotic traits of A. muciniphila. Transcriptome analysis showed that the genes encoding most mucin-degrading enzymes were significantly upregulated in the presence of mucin. By contrast, most genes involved in glycolysis and energy metabolic pathways were upregulated under mucin-depleted conditions. Interestingly, the absence of mucin resulted in the upregulation of 79 genes encoding secreted protein candidates, including Amuc-1100 as well as members of major protein secretion systems. These transcript level changes were consistent with the fact that administration of A. muciniphila grown under mucin-depleted conditions to high-fat diet-induced diabetic mice reduced obesity and improved intestinal barrier integrity more efficiently than administration of A. muciniphila grown under mucin-containing conditions. In conclusion, mucin content in the growth medium plays a critical role in the improvement by A. muciniphila of high-fat diet-induced obesity, intestinal inflammation, and compromised intestinal barrier integrity related to a decrease in goblet cell density. Our findings suggest the depletion of animal-derived mucin in growth medium as a novel principle for the development of A. muciniphila for human therapeutics

    Characterization of Developmental- and Stress-Mediated Expression of Cinnamoyl-CoA Reductase in Kenaf ( Hibiscus cannabinus

    Get PDF
    Cinnamoyl-CoA reductase (CCR) is an important enzyme for lignin biosynthesis as it catalyzes the first specific committed step in monolignol biosynthesis. We have cloned a full length coding sequence of CCR from kenaf (Hibiscus cannabinus L.), which contains a 1,020-bp open reading frame (ORF), encoding 339 amino acids of 37.37 kDa, with an isoelectric point (pI) of 6.27 (JX524276, HcCCR2). BLAST result found that it has high homology with other plant CCR orthologs. Multiple alignment with other plant CCR sequences showed that it contains two highly conserved motifs: NAD(P) binding domain (VTGAGGFIASWMVKLLLEKGY) at N-terminal and probable catalytic domain (NWYCYGK). According to phylogenetic analysis, it was closely related to CCR sequences of Gossypium hirsutum (ACQ59094) and Populus trichocarpa (CAC07424). HcCCR2 showed ubiquitous expression in various kenaf tissues and the highest expression was detected in mature flower. HcCCR2 was expressed differentially in response to various stresses, and the highest expression was observed by drought and NaCl treatments

    Application of Hyperspectral Imaging for Rapid and Nondestructive Detection of Paraffine-Contaminated Rice

    Get PDF
    The emergence of paraffin-coated rice in China, aimed at enhancing its market appeal and achieving a translucent appearance, has given rise to a significant global food safety concern. This situation poses substantial health risks to consumers. Hyperspectral analysis, recognized as a powerful and nondestructive technique for assessing food quality and safety, offers a potential solution. This study conducted a comprehensive investigation using Visible-Near Infrared (VIS-NIR) hyperspectral imaging systems operating within the 400-1000 nm range to identify paraffin-contaminated rice. Various rice varieties from diverse regions were obtained and intentionally tainted with varying levels of paraffin. Imaged samples were further preprocessed for spectral data extraction from individual rice seeds’ regions of interest (ROI). The dataset encompassed 3000 spectral records obtained from both non-contaminated and contaminated samples. The obtained spectral data were employed to develop partial least squares discriminant analysis (PLS-DA) and principal component linear discriminant analysis. The primary goal was to discriminate between contaminated and non-contaminated rice samples effectively. Notably, the results indicated that PLS-DA consistently achieved an accuracy exceeding 94% across various preprocessing techniques. Overall, this study showcased the potential of combining hyperspectral imaging with chemometrics to detect paraffin-contaminated rice seeds, providing a valuable contribution to food safety assessment in the industry

    Intramural gallbladder hematoma mimicking gallbladder neoplasm in a 55-year-old male patient

    Get PDF
    Hemorrhage in the gallbladder (GB) is usually associated with cholecystitis, GB neoplasm, trauma, hemobilia, and cystic artery aneurysm. Our patient had not experienced any previous abdominal trauma, and GB hemorrhage was unlikely to result from cholecystitis or bleeding diathesis. A 55-year-old male was admitted because of right upper quadrant pain. Both prothrombin time and partial thromboplastin time were normal. Abdominal computed tomography, endoscopic ultrasound and magnetic resonance cholangiopancreatography were performed. Image studies revealed GB wall thickening and an intraluminal mass. Laparoscopic cholecystectomy was performed. Upon opening the GB postoperatively, a large amount of fresh blood and old blood clot was noted. The incidence of GB hematoma is very rare. GB hematoma should always be considered in the differential diagnosis of GB tumor. In such a situation, surgical intervention is needed for further patient evaluation and management. We present a rare case of intramural GB hematoma, of which we were unable to make a definitive diagnosis preoperatively

    A Case of Synchronous Squamous Cell Carcinoma in the Esophagus and Stomach

    Get PDF
    Synchronous esophageal and gastric cancers with the pathologic features of a squamous cell carcinoma are extremely rare. A 57-year-old male visited our hospital with a history of hematemesis and was diagnosed with a synchronous cancer. He underwent a staging work-up, and the resectable lesion in the stomach was operated on following radiologic and endoscopic evaluations. The pathologic examination revealed a synchronous cancer consisting of squamous cell carcinoma in the distal esophagus and the cardia of the stomach. We report a case of a synchronous cancer that was successfully treated by surgical resection followed by concurrent chemoradiotherapy. We also discuss the hypothesis regarding the origin and presentation of the synchronous cancer and highlight the importance of careful surveillance by physicians at the time of diagnosis

    Characterization of Developmental-and Stress-Mediated Expression of Cinnamoyl-CoA Reductase in Kenaf (Hibiscus cannabinus L.)

    Get PDF
    Cinnamoyl-CoA reductase (CCR) is an important enzyme for lignin biosynthesis as it catalyzes the first specific committed step in monolignol biosynthesis. We have cloned a full length coding sequence of CCR from kenaf (Hibiscus cannabinus L.), which contains a 1,020-bp open reading frame (ORF), encoding 339 amino acids of 37.37 kDa, with an isoelectric point (pI) of 6.27 (JX524276, HcCCR2). BLAST result found that it has high homology with other plant CCR orthologs. Multiple alignment with other plant CCR sequences showed that it contains two highly conserved motifs: NAD(P) binding domain (VTGAGGFIASWMVKLLLEKGY) at N-terminal and probable catalytic domain (NWYCYGK). According to phylogenetic analysis, it was closely related to CCR sequences of Gossypium hirsutum (ACQ59094) and Populus trichocarpa (CAC07424). HcCCR2 showed ubiquitous expression in various kenaf tissues and the highest expression was detected in mature flower. HcCCR2 was expressed differentially in response to various stresses, and the highest expression was observed by drought and NaCl treatments

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo
    corecore