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Cinnamoyl-CoA reductase (CCR) is an important enzyme for lignin biosynthesis as it catalyzes the first specific committed step in
monolignol biosynthesis. We have cloned a full length coding sequence of CCR from kenaf (Hibiscus cannabinus L.), which contains
a 1,020-bp open reading frame (ORF), encoding 339 amino acids of 37.37 kDa, with an isoelectric point (pI) of 6.27 (JX524276,
HcCCR2). BLAST result found that it has high homology with other plant CCR orthologs. Multiple alignment with other plant
CCR sequences showed that it contains two highly conserved motifs: NAD(P) binding domain (VTGAGGFIASWMVKLLLEKGY)
at N-terminal and probable catalytic domain (NWYCYGK). According to phylogenetic analysis, it was closely related to CCR
sequences of Gossypium hirsutum (ACQ59094) and Populus trichocarpa (CAC07424). HcCCR2 showed ubiquitous expression in
various kenaf tissues and the highest expression was detected in mature flower. HcCCCR2 was expressed differentially in response to

various stresses, and the highest expression was observed by drought and NaCl treatments.

1. Introduction

Lignin is an aromatic heteropolymer and normally present
in the secondary thickened plant cell walls with cellulose
and hemicellulose [1-3]. It is the second most abundant
biopolymer in the earth, after cellulose. It gives rigidity to
the plant cell wall and confers hydrophobicity to vascular
elements [4]. Besides providing mechanical support, it creates
a strong barrier to pathogen invasion [4]. Lignification can
be induced by pathogen attack, wounding, and other abiotic
stresses [5]. It is believed that emergence of lignin during
evolution is a crucial adaptation for plants to live on land
[6]. In addition to vascular plants, some bryophytes and
red algae also contain lignin or lignin-like molecules [3].

Lignin biosynthesis is very complex and involves several
enzymes. It is produced by the phenylpropanoid pathway
(Figure 1). There are two major steps of lignin biosynthesis
in plants: monolignol biosynthesis (coniferyl alcohol, sinapyl
alcohol, and p-coumaryl alcohol) and cross-linking of the
monolignols. Cross-linking is conducted by peroxidases and
laccases to form polymers [6]. Intercellular synthesis of
three monolignol precursors is followed by extracellular
transport and polymerization as guaiacyl (G), syringyl (S),
and p-hydroxyphenyl (H) units of lignin, respectively [1-
3]. In addition to these three monolignols, other phenyl-
propanoids also incorporate in the polymer [4]. Composition
of monolignol units and amount of lignin are highly variable
between taxa and cell types, even in different environmental
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FIGURE 1: Monolignol biosynthetic pathway in dicotyledonous
angiosperms. PAL, phenylalanine ammonia-lyase; C4H, cinna-
mate 4-hydroxylase; 4CL, 4-coumarate: CoA ligase; HCT, p-
hydroxycinnamoyl-CoA: quinate shikimate p-hydroxycinnamoyl-
transferase; C3H, p-coumarate 3-hydroxylase; CCoAOMT, caffeoyl-
CoA O-methyltransferase; CCR, cinnamoyl-CoA reductase; CAD,
cinnamyl alcohol dehydrogenase; COMT, caffeic acid O-methyl-
transferase; F5H, ferulate 5-hydroxylase. Modified from Godfrey
Neutelings (2011) [2].

conditions [2-4]. Lignin is problematic during pulp and
biofuel production [7, 8]. The presence of lignin decreases
forage digestibility to cattle and other ruminants. Recently,
researches focus on the development of genetically modified
plants with less lignin content or altered composition. In
this context, cinnamoyl-CoA reductase (CCR) can be a good
target gene. CCR catalyzes the first specific committed step in
monolignol biosynthesis [9, Figure 1]. CCR enzyme converts
different cinnamoyl-CoA esters (p-coumaroyl-CoA, caffeoyl-
CoA, feruloyl-CoA, and sinapoyl-CoA) to corresponding
cinnamaldehydes [10]. However, substrate specificity varies
between different CCR enzymes from different species, even
in between isoenzymes from the same species [11]. CCR
orthologs were identified from various plants [12, 13]. Plants
with downregulated CCR and CCR-like genes caused vari-
ous phenotypic and developmental abnormalities: dwarfism,
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reduced number of seeds, small stem diameter, shorter floral
stems, dark green leaves, growth delay, and collapsed xylem
vessels [11-14]. Downregulation of CCR enzyme reduced
lignin content in Arabidopsis and tobacco up to 50% [7]. In
tomato, downregulation of CCR also decreased lignin content
and increased soluble phenolic pools [15]. CCR gene family is
very diverse and can be classified as true and CCR-like [11].
Multiple homologs of CCR genes can be present in the same
plant and they are involved in different function. In case of
Arabidopsis, there are 11 CCR homologs [11]. Among them
AtCCRI is involved in developmental lignification, while
AtCCR2 is for stress and elicitor response [4].

Kenaf (Hibiscus cannabinus L.), an annual dicotyledonous
plant, is a potential source for future biomass production [16].
It has high growth rate and broad ecological adaptability and
can grow in adverse environmental condition [17, 18]. Kenaf
bark (35-40% of total stem weight) is a good raw material
for high quality of paper production. Its stem is composed
of two types of fibers: outer long fiber (2-6 mm) and inner
short fiber (0.6 mm) in 1: 3 ratios [19]. Beside paper industry,
kenaf stem is highly valuable for packaging materials, textiles,
and bio-composite materials [19, 20]. In the present study,
a CCR from kenaf was isolated and characterized based on
sequence homology. Expression patterns in different tissues
were investigated. Effects of various stresses and elicitors on
CCR expression were also investigated. For this purpose,
various stresses (MeJA (methyl jasmonic acid), cold, H,O,,
SA (salicylic acid), ABA (abscisic acid), wounding, NaCl,
and drought) were applied and the expression patterns were
analyzed in 3-week-old stem tissues of kenaf plants.

2. Materials and Methods

2.1. Plant Materials, Stress Treatments, and RNA Isolation.
Kenaf (Hibiscus cannabinus L., C-9) was grown and treated
as described previously [21]. Three-week-old kenaf seedlings
were treated with MeJA, cold, H,0,, SA, ABA, wounding,
NaCl, and drought. RNA was extracted as described previ-
ously [21].

2.2. Cloning. Two micrograms of RNA were used
for ¢cDNA synthesis using Superscript III First-strand
synthesis kit (Invitrogen, Carlsbad, CA, USA) according
to the manufacturer’s instructions. Gene specific prim-
ers were used to amplify from ¢cDNA [CCR-E 5'-AA(T/
C)CC(A/T)GATGATCC-3'; CCR-R, 5'-TCCATGTA(C/G/
A)AC(T/G/C)GCACC-3']. The degenerate primers were
designed based on the consensus sequences of the CCR
orthologs of Arabidopsis thaliana (NM101463), Raphanus
raphanistrum (EV527773), Glycine max (AK286730), Betula
luminifera (FJ410450), Capsicum annuum (EU616555),
and Brassica rapa (EX046473). The PCR product was
confirmed by running in a 1.2% agarose gel and then it was
purified using Wizard SV Gel and PCR Clean-up System
(Promega, Madison, WI, USA) and cloned into pGEM-T
easy Vector (Promega). DNA sequences were analyzed by
Cosmogenetech Co. (Seoul, Korea). For cloning of full length
CCR ortholog, both 5" and 3’ RACE (rapid amplification
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ATGccagttgacagctcttgecagcaatggecacgaccgtctgtgtcaccggtgecggtgge
MPVDSSCSNGTTVCVTSGAGG
ttcatcgcttcttggatggtcaagecttcttcttgagaagggttacatcgtcaaaggeact
F I ASWMVKLTILTLEIKGYTIVIKSGT
gtaaggaacccagatgatcccaagaattctcatttgagagagcttgaaggagecgaatgag
VRNPDDUPI KN SHT LI RETLEGANE
aggctatcgcttcacagagctgaccttcttgattaccagtctcttaaggaagecattaat
RLSLHRADTLTILDYOQSTU LI KEATIN
ggctgtgatggagttttccacaccgettcacctgtaaccgatgatcctgaacaaatggtg
GCDGVFHTASZ&PVTDDZPE-AQMYV
gagccggecgtgaatggcacaaaaaatgtgataatggecageggeggaggeccaaggttegg
EPAVNGTI KNVIMAAAEAIKYVR R
cgtgtggtgttcacgtcttcaattggegcagtgtacatggaccccaacaggageccggat
RVVFTSSIGAVYMDZPNRSPD
gtagttgtggacgagtcttgectggagtgatctcgagttctgcaaaaatactaagaattgg

VVVDESCWSDLETFTCKNTK N w
tattgttatgggaaggcagtggcagagcaggecagettgggaaaccgecaaggaaaaaggg
Y CYGKAVAEQAAWETATKETIKSG
é%éé;gggéé%éégégtaaccccagttctggtgttgggtccattgctgcaatcaaccgtg
vbDLVVVTPVLVLGPTLTLAQSTYV
aatgccagcattgttcacatcctcaagtacttaaccggectccgegaagacctatgecaat
NASIVHTIULIZKYLTGSAKTY AN
tcagttcaagcctatgttcacgtcagagacgttgecttagecacacattcttgtctttgag
S VQAYVHVRDVALAHTITULVEE
aatccctctgecteccggecgatacctetgegecgagagegtecctccategtggagaggtg
NP SASGRYLCAESVLHIRGEYV
gtggagattctggeccaagttcttccccgagtatcccatccctaccaagtgetccgacgag
VEILAKT F FPEYU?PTIUPTIZ KT CSDE
aataacccgagaaaaaagccgtacaagttctcgaaccagaagectgagggacttgggattg
NNPRIKZKPYIKTFSNQKILIR RDTLGTL
gagttcaccccggtgaagcagtgectatacgagacggtgaagagecttgcaagagaaaggg
EFTPVKAQCLYETVIKS ST LAOQETZKSG
catgtagctataccagctcatcatcaccaggaagattcagtgctgegtattcaatctTGA

HVAI PAHHHQEDS SVLRTIQS *

FIGURE 2: Full length CDS and deduced amino acid sequence of kenaf CCRI ortholog. The start codon (ATG) and stop codon (TGA) are in
uppercase. Putative NAD(P) binding domain and catalytic domain are underlined in solid and dashed line, respectively.

of cDNA ends) were performed using the RACE systems
according to the manufacturer’s instructions (Invitrogen).

2.3.  Quantitative Real-Time PCR (QPCR) Analysis.
QPCR was performed as described previously [22].
Mx3000P QPCR System (Agilent, Santa Clara, CA,
USA) with SYBR Green QPCR Master Mix (LPS
Solution, Daejeon, Korea) were used. Primers were de-
signed using Primer 3 software of Biology Workbench
(http://workbench.sdsc.edu/). Forward and reverse primers
of HcCCR2 ortholog were as follows: forward primer, 5.
AAGTTCTCGAACCAGAAGCTG AG-3'; reverse primer,
5'-TGCGTCTCCACTTCCCTTAATAAACC-3'.  ACTIN
(DQ866836), a housekeeping gene, was used as an expres-
sion control with the primer sequences: forward primer,
5'-AAGTTCTCGAACGAGAAGCTGAT-3'; reverse primer,
5'-AGTGATTTCCTTGCTCATACGGT-3'.

2.4. Data Analyses. DNA and protein sequences were
analyzed using NCBI Blast (http://blast.ncbi.nlm.nih.gov/),

Biology WorkBench (ClustalW), ExPASy Proteomics Server
(http://expasy.org/tools/pi-tool.html),  Superfamily 1.75
(http://supfam.org/SUPERFAMILY/index.html/), ~ SignalP
3.0 (http://www.cbs.dtu.dk/services/SignalP/), and TargetP
V1.1 (http://www.cbs.dtu.dk/services/TargetP/). Phylogenet-
ic tree was constructed using amino acid sequen-
ces by the neighbor joining method in Mega5 (http://www
.megasoftware.net/).

3. Results and Discussion

3.1. Cloning and Sequence Analysis. We cloned a full length
of CCR ortholog from kenaf (GenBank Accession number
JX524276). For full length cloning, we used degenerate
primers and RACE system. Sequencing data suggested that
it consists of a 1,020-bp open reading frame (ORF), encoding
339 amino acids (Figure 2). The predicted molecular weight
of the deduced protein is 37.37 kDa, with an isoelectric point
(pI) of 6.27, as calculated by the ExPASy Proteomics Server.
BLASTP search reveled that deduced protein sequence has



4 The Scientific World Journal

1 MTyVDAVSTDAAGAPAAAAAPVQQPGNGQTVCVTGAaGyIASWIVKLLLEKGYTVKGTVRNPDDPKNAHLKkALAGAAERL
2 MPieDSSSTTS----------------- QTVCVTGAGGFIASW1IVKLLLErGYTVKkGTVRNPeDPKNSHLRALEGADQRL
3 MPTDtPSSN-- GMTVCVTGAGGFIASWmVKLLLEkKkGYsVkGTVRNPDDPKNSHLRELEGAKERL
4 MPvDsSCSN-- GTTVCVTGAGGFIASWmVKLLLEKGYIVKkGTVRNPDDPKNSHLRELEGANERL
5 MPiesSSTN-- GPTVCVTGAGGFIASWiVKLLLEKGYTVkGTVRNPDDPKNCHLRELEGAKERL
6 MPFDCSSAS-- GLTVCVTGAGGFIASWiVKLLLEkKkGYTVkGT1IRNPDDPKNAHLKELEGAKERL
7 MPADsSSLPGH GQTVCVTGAGGFIASWiVKLLLdrGYsVkGTVRNPDDPKNAHLRALEGADERL
8 MPvDtSSLSGH GQTVCVTGAGGFIASWiVKLLLErGYTVkGTVRNPDDPKNSHLRELEGAKERL
9 MPvDALPGS-- GQTVCVTGAGGFIASWiVKLLLErGYTVrGTVRNPDDPKNGHLRELEGASERL

NQViCVTGAGGFIASWmVKLLLEkKkGYsVrGTVRNPDDPKNSHLRALEGAKAJRL
GRVVCVTGAGGFIASW1VKLLLEKGYTVrGTVRNPDDPKNCHLRELEGAKERL
GQTVCVTGAGGFIASWmVKLLLEKGYTVrGTVRNPDDPKNSHLRNLEGAEERL
GQTiCVTGAGGFIASWmVKLLLErGYTVrGT1RNPDDPKNAHLRELEGAAERL

MPvDASSLSGQ- GQTiCVTGAGGFIASWmVKLLLAkGYTVrGTARNPADPKNSHLRELEGAEERL
15 MTAGKQtEE-- GQTGCVTGAGGFIASW1VKLLLErGYTVrGTVRNPeDQKNAHLKkQLEGAEERL
16 MPAD------- GKLVCVTGAGGYIASWiVKLLLErGYTVrGTVRNPADPKNNHLRELQGAKERL
17 MLYD-------------m o oo oo GKLVCVTGAGGYIASWiVKLLLErGYTVrGTVRNPTDPKNNHLRELQGAKERL
18 MPVDVASPA---~--~---~---------- GKTVCVTGAGGYIASWiVKiLLErGYTVkGTVRNPDDPKNTHLRELEGgKERL

ILCKADLLDYdAiCRAVQGCHGVFHTASPVTDDPEQMVEPAVRGTEYVINAAAEAGTVRRVVFTSSIGAVTMDPSRGPDV
ILCKADLLDfeSLrEAIKGCDGVFHTASPVTDNPAEMVEPAVNGTKYVIDAAAEAG-VRRiVFTSSIGAVYMDPNRSPDV
sLHrADLLDYPSLKkEAISGCDGVFHTASPVTDDPEQMVEPAVNGTKNVImAAAEAK-VRRVVFTSSIGAVYMDPNRSPDV
sLHrADLLDYQSLKkEAINGCDGVFHTASPVTDDPEQMVEPAVNGTKNVImMAAAEAK-VRRVVFTSSIGAVYMDPNRSPDV
sLHKADLLDYQSLkEAISGCDGVFHTASPVTDDPEQMVEPAVIGTKNVImMAAAEAK-VRRVVFTSSIGAVYMDPNRSPDV
TLWKTDLLDYeSLkAAIDGCDGVIHTASPVTDDPELMVEPAVDGTKNVIiAAAETK-VRRVVFTSSIGAVYMDPNRGPDV
TLCKADLLDYQSLrEAISGCQGVFHTASPVTDDPEQMVEPAVEGTKNVINAAAEAK-VRRVVFTSSIGAVYMDPNRSPDT
TLCKADLLDYeSLrKAIMGCDGVFHAASPVTDDPEQMVEPAVNGTKNVviAAAEAK-VRRVVFTSSIGAVYMDPNRNPDV
TLYKgDLmDYGSLEEAIKGCDGVVHTASPVTDDPEQMVEPAVIGTKNVIVAAAEAK-VRRVVFTSSIGAVTMDPNRGPDV
TLCKADLLDYQSLLEAIIGCDGVFHTASPVTDDPEQMVEPAVIGTKNVIVAAAEAK-CRRVVFTSSIGAVYMDPNRSPDA
TLCrgDLLDYQSLrEAINGCDGVFHTASPVTDDPEQMVEPAVIGTKNVITAAAEAN-VRRVVFTSSIGAVYMDPSRDPeK
TLCKADLLDfGSLrQVINGCDGVFHTASPVTDDPEEMVEPAVIGTKNVIVAAAEAK-VRRVVFTSSIGAVTMDPNRGPDT
TLCrADLLDYeSLKkEAINGCDGVFHTASPVTDDPEQMVEPAVNGTKNVIQAAAEAK-VRRVVFTSSIGAVYMDPTRGPDV
TLCKADLLDYeSLkEAIQGCDGVFHTASPVTDDPEEMVEPAVNGTKNVIiAAAEAK-VRRVVFTSSIGAVYMDPNkGPDV
TLVKADLmDYNSLLNAINGCQGVFHVASPVTDDPEEMVEPAVNGTKNV1IDACAVAG-VRRVVFTSSIGAVYMDPSRDYDA
TLHSADLLDYeALSATIDGCDGVFHTASPmTDDPETM1EPAVNGAKFVIDAAAKAK-VkRVVFTSSIGAVYMNPNRDPQT
TLHSADLLDYeALCATIDGCDGVFHTASPmTDDPETM1EPAVNGAKFVIDAAAKAK-VkKkRVVFTSSIGAVYMNPNRDTQA
ILCKADLQDYeALkAAIDGCDGVFHTASPVTDDPEQMVEPAVNGAKFVINAAAEAK-VKRVVITSSIGAVYMDPNRDPeA
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iVDESCWSDLAFCKNTKNWYCYGKMVAEQSAWETAKAKGVDLVVINPVLVLGPPLQSAVNASIvHILKYLTGSAKTYANL
iVDENCWSDLAFCKNTKNWYCYGKM1AEQSAWETAKAKGVDLVVINPVLVLGPPLQSAiNASIvHILKYLTGSAKTYANL
VVDESCWSDLAFCKNTKNWYCYGKMVAEQAAWETAKEKGVDLVVINPVLVLGPPLQPTiNASIYHVLKYLTGSAKTYANL
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VQAYVDVRDVADAH1RVfEsPRASGRYLCAERVLHREdAVVRILAKLFPEYPvPTrCSDEVNPRKQPYKFSNQKLrDLGLE
VQAYVHVKDVAmAHILVfENPSASGRfLCAESVLHRGAVVQILSKLFPEYPIPTKCFDEVNPRKKPYKFSNQrLKDLGLQ
VQAYVHVRDVALAHILVfENPSASGRYLCAESVLHRGEVVEILAKLFPEYPvPTKCSDESNPRKKPYKFSNQKLreLGLE
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12 VQAYVHVKDVALAHILVYEtPSASGRYLCAESVLHRGAVVEILAKFFPEYPIPTKCKDETKPRAKPYKFSNQKLKDLGLE
13 VQAYVHVKDVALAHILVYEtPSASGRYLCAESVLHRGAVVEILAKFFPEYPIPNKCKDNGKPRAEPYKFtNQKLrDLGLE
14 VQAYVHVRDVALAHILVfEtPSASGRYLCSESVLHRGEVVEILAKFFPEYPIPTKCSDEKNPRKQPYKFSNQKLrDLGFE
15 VQAYVHVRDVAEAHILVYEsPSASGRYLCAESVLHRGAVVA1LASMFPQYPIPTKVKedGKPRVKPwKVSNQKLKDLGLE
16 TQVYVDVRDVALgHvmVYEsPSASGRYiLAEtALHRGEVVEILAKFFPEYP1PIKCSDEKNPRAKPYKFtTQKiKDLGLE
17 TQVYVDVRDVALgHvVLVYEAPSASGRYiFAEtALDRGEVVEILAKFFPEYP1PTKCSDEKNPRAKPYKFtTQKiKDLGLE
18 TQAYVDVRDVALAHVLVYEAPSASGRYLLAESARHRGEVVEILAKLFPEYP1PTKCKDEKNPRAKPYKFtNQKiKDLGLE
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] FRPVSQSLYdTVKNLQEKGHLPVLGEQTTEADDKEAAPAAAELQQGGIAIRA
2 FTPVKQCLYdTVKCLQAKGHLP1AKPLS-------------———————————
3 FTPVKQCLYETVKSLQEKGHLAiPAQQ-QE--
4 FTPVKQCLYETVKSLQEKGHvAiPAHHHQE--
5 FTPVKQCLYETVKSLQEKGHLPiPAQH-QE--
6 FTPVKQCLYETVKSLQEKGVLPiPTQQ--E--
7 FTPAKQCLYETVTSLQEKGHLA1PASKQQE--
8§ FTPVKQCLYETVKSLQErGHLPiP--KQPE--
9 FTPVKQCLYETVKSLQEKGHLPvPSPP--E--
10 FTPVKQGLYETVKSLQEKGHLPvVLSPPPQQT------ dDSirIQS-------
11 FTPVKQCLYETVKSLQEKGHLPiPT----QK------ dETirIQt-------
12 FTPTKQSLYETVKSLQAdKGHLPiPTHLSRIMNLLF--AFT1EIRSHEQVYLP
13 FTPVKHTLYETVKSLQAKGHLPvPTKQE
14 FTPVKQCLYETVKSLQEKGHLPiPKQAA-
15 FTPAKQCLYETVISLQEKGHiSK-----—----—-——=————————————~————
16 FKPiKQSLYESVKSLQEKGHLP1P---------

17 FKPiKQSLYESVKSLQEKGHLP1P---------

FIGURE 3: Multiple alignment of the deduced amino acid sequences of kenaf CCR ortholog with other plants by using ClustalW and
BOXSHADE sequence alignment program in Biology WorkBench. Identical and similar amino acids are highlighted with gray. Conserved
NAD(P) binding domain and catalytic domain are underlined in solid and dashed line, respectively. GenBank accession numbers are
represented as follows: (1) Saccharum officinarum (CAA13176), (2) Cinnamomum osmophloeum (AFG26325), (3) Hibiscus cannabinus
(ADK24219), (4) Hibiscus cannabinus (JX524276), (5) Gossypium hirsutum (ACQ59094), (6) Betula luminifera (ACJ38670), (7) Linum album
(CAD29427), (8) Hevea brasiliensis (ADU64758), (9) Eucalyptus gunnii (CAA56103), (10) Codonopsis lanceolata (BAE48787), (11) Solanum
lycopersicum (NP001234612), (12) Vaccinium corymbosum (ACI14382), (13) Pyrus pyrifolia (ADK62523), (14) Populus trichocarpa (CAC07424),
(15) Pinus massoniana (ACE76870), (16) Brassica napus (AEK27156), (17) Arabidopsis thaliana (AAG53687), and (18) Arabidopsis thaliana
(NP173047).
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FIGURE 4: Phylogenetic analysis of the deduced amino acid sequences of kenaf CCR ortholog and other plants. The tree was constructed
by the neighbor-joining method of ClustalW and Mega5. The numbers at the nodes indicate bootstrap values from 1000 replications.
GenBank accession numbers are represented as follows: Solanum lycopersicum (NP001234612), Codonopsis lanceolata (BAE48787), Vaccinium
corymbosum (ACI14382), Pyrus pyrifolia (ADK62523), Eucalyptus gunnii (CAA56103), Cinnamomum osmophloeum (AFG26325), Saccharum
officinarum (CAAI13176), Populus trichocarpa (CAC07424), Gossypium hirsutum (ACQ59094), Hibiscus cannabinus (JX524276), Hibiscus
cannabinus (ADK24219), Betula luminifera (ACJ38670), Hevea brasiliensis (ADU64758), Linum album (CAD29427), Pinus massoniana
(ACE76870), Arabidopsis thaliana (NP173047), Arabidopsis thaliana (AAG53687), and Brassica napus (AEK27156).

high similarities with other plant CCR sequences. Among
them, one is another CCR ortholog from kenaf (ADK24219).
According to Target P analysis, JX524276 proteins have no
signals for subcellular localization, which suggests that our
CCR protein is probably cytoplasmic. Previous study also
showed that OsCCRI-GFP localized to the cytoplasm when
it was transiently expressed in rice protoplast [23]. Signal
P 3.0 analysis also showed no significant signal peptides at
N terminal which suggests that JX524276 probably codes a
nonsecretory protein. Multiple alignments of CCR protein
sequences showed high sequence identities with other CCRs,
up to 73% (Figure 3). Among them Gossypium hirsutum
(ACQ59094) is the highest with 90% identity. The alignment
result also showed two highly conserved motifs: NAD(P)-
binding domain at N-terminal (VTGAGGFIASWMVKL-
LLEKGY) and probable catalytic domain (NWYCYGK)
[12, 13]. Consensus sequence for NAD(P) binding domain
is VTGA(G/A)G(F/Y)(I/L)ASW(I/L/M)VK(L/T)LL(E/D)(K/
R)GY. Putative catalytic domain (NWYCYGK) is fully con-
served among the species. Superfamily result also predicted
that this kenaf CCR belongs to NAD(P) binding Rossmann-
fold domain containing protein. Previous literature suggested

that all plant CCRs can be broadly classified in two groups:
CCR and CCR-like [4, 11]. It is predicted that only one or two
true CCR genes are present in plant for lignin biosynthesis
during development, whereas others are backup for the real
one [11]. As an example, experimental evidence showed that
Arabidopsis has only two real CCR genes out of eleven
CCR homologs [9]. AtCCR2 expression was increased in
Arabidopsis ccrl mutant and function was partly compensated
[14]. CCR enzyme converts different cinnamoyl-CoA esters,
such as p-coumaroyl-CoA, caffeoyl-CoA, feruloyl-CoA, 5-
hydroxyferuloyl-CoA, and sinapoyl-CoA, to corresponding
cinnamaldehydes [10]. However, substrate specificity varies
between different CCR enzymes from different species, even
in between isoenzymes from the same species [11]. In order
to study the evolutionary relationships among different
CCR sequences from various plants, a phylogenetic tree
was constructed (Figure 4). Among 18 members of plant
CCR proteins, both of kenaf CCR orthologs showed the
closest relationship to Gossypium hirsutum (ACQ59094) and
Populus trichocarpa (CAC07424). These results indicate that
we successfully cloned a CCR ortholog from kenaf. From now
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on, ADK24219 and JX524276 are designated as HcCCRI and
HcCCR2, respectively.

3.2. Analysis of Tissue Specific Expression of HcCCCR2. We
investigated the expression patterns of HcCCR2 transcripts
in different tissues (Figure5). During stem development,
HcCCR2 was highly expressed up to 4 weeks. Then it was
sharply downregulated in 8-week-old plants and maintained
its steady state up to 20 weeks (Figure 5(a)). HcCCR2 did not
show big differential expression among different leaf tissues,
though immature leaf showed higher expression compared
to young and mature leaves (Figure 5(b)). In flower, HCCCR2
showed higher level of expression in young flower, compared
to immature and mature flower tissues (Figure 5(c)). HCCCR2

transcripts were identified in all tissues and organs of 16-
week-old plants (Figure 5(d)). The expression pattern of
HcCCR2 can be divided into three classes: (1) high expression
in mature flower; (2) intermediate expression in root and
mature leaf; (3) low expression in stem and petiole. Higher
expression at mature flower suggests that HcCCR2 might
have an important role during flowering. Expression of the
genes involved in lignin biosynthesis is important for fertility
(pollen release) and seed dispersal (silique dehiscence) [24].
High levels of phenylpropanoid-derived compounds were
also detected in Arabidopsis flowers [25]. Other phenyl-
propanoid pathway related genes (C3H, HCT, CCoAOMT,
PAL, and C4H) also showed high expression in flower tissues
of kenaf plants [21, 26-29]. CCR has important role in
development. Arabidopsis CCR1 has conserved AC elements
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in promoter, which are responsible for developmental ligni-
fication [4]. Previous studies showed that CCR family has
diverse expression patterns among genus, species, and even
in different tissues of the same plant. In Arabidopsis, AtCCRI
was highly expressed in all tissues compared to AtCCR2 [4].
Ten poplar CCR homologs differentially expressed in bark,
leaf, and xylem tissues [11]. Among them CCR2 and CCR6
showed highest expression in leaf tissues. Some CCR genes

from Isatis, Ginkgo, and Norway spruce highly expressed not
only in lignified tissues like stems, but also in other tissues
[13, 30, 31]. Those results suggest that different CCR homologs
might be involved in different cellular function.

3.3. Analysis of Stress-Regulated Expression of HCCCRZ in Stem
Tissues. As plants are sessile, they are facing many adverse



environmental conditions throughout their life span. Plants
have developed advanced mechanisms to defend themselves
from various biotic and abiotic stresses. Lignification is one
of the most important mechanisms to combat with stresses
[5]. Not much has been known about the stress-mediated
CCR expression in plants. Various stresses were applied to
3-week-old kenaf plants in order to examine the expression
patterns of HcCCR?2 transcripts in stem tissues (Figure 6).
All treatments showed differential expression of HcCCR2.
Wound, NaCl, ABA, and H,0, treated samples showed
gradual upregulation up to 24h, and then the expression
was decreased at 48 h. Maximum expression was occurred
at 24 h by all these four treatments. MeJA treated samples
also showed highest expression at 24 h. SA treated samples
did not show differential expression up to 12 h. Then it was
downregulated at 24 h, followed by upregulation at 48 h. Cold
treated samples showed quite different expression pattern. In
cold treated samples HcCCR2 was gradually downregulated
except 6h. Drought induced the expression up to 10 days,
then it was downregulated. Among the treatments, highest
accumulation of HcCCR2 was observed in NaCl (% relative
expression to ACTIN) at 24h and drought treatment (%
relative expression to ACTIN) at 10 days. These results
suggest that HCCCR2 is involved in stress regulatory pathway.
Previous literature also showed stress mediated differential
expression of CCR in various plant species. Water deficit
treatments induced the expression of ZmCCRI and ZmCCR2
as well as lignin biosynthesis in maize root elongation zone
[32]. This upregulation was detected both at 1 and 48 h after
water deficit treatment. Particularly in 48 h ZmCCR2 showed
10fold upregulation compared to control. MeJA treatment
showed high induction of liCCR gene from Isatis indigotica,
especially at 4 and 8h after treatment [13]. ABA treated
plant showed downregulation of IiCCR transcript, which is
similar to our cold treated sample. Other groups showed ABA
induced GmCCR transcript in soybean [33]. SA treatment
also induced CCR transcripts in Arabidopsis leaves and Linum
album cell cultures [34]. They also showed wounding and
NaCl mediated upregulation of G CCR transcript. Probably
different homologs are involved in different function. CCR
is also responsive to various biotic stresses. For example,
fungal and bacterial infection induced CCR genes: wheat
TmCCR by powdery mildew; switchgrass PvCCR2 by Puc-
cinia; Arabidopsis AtCCR2 by Xanthomonas campestris pv.
Campestris [35-37]. It is hypothesized that OsRacl, one of the
Rac/Rop family of small GTPases, activates CCR activities
upon pathogen attack, which results in the induction of
monolignol production [23]. We can divide all treatments
into two categories, though they are interlinked with each
other. NaCl, drought, cold, and ABA exert similar kind of
stress on the plant [38-40]. In other hand SA, JA, and
wounding are related to the pathogen mediated signaling
pathway [41]. Mechanical wounding and pathogen cause
similar responses in plant. Both of them induce cellular
phytohormone (SA, JA, and ABA) and lignification to the
damaged or invading sites [41, 42]. These phytohormones
help to propagate and amplify the perceived signal via both
synergistic and antagonistic interactions [41, 43]. H,O, is a
very important signaling molecule for all kind of stresses.
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H,0, and other reactive oxygen species (ROS) can be pro-
duced by different stresses, which in turn cause random cross-
linking of subunits and formation of lignin [44]. Previous
experiment showed that many lignin biosynthesis genes were
differentially expressed due to the various stress treatments.
Cold induced phenylalanine ammonia lyase (PAL) activity in
Brassica napus, cinnamate 3-hydroxylase (C3H) expression in
Rhododendron, and HcCCCoAOMT and HcHCT expression in
kenaf [5, 21, 27] were reported.

In summary, we have cloned the full length coding
sequence of cinnamoyl-CoA reductase (HcCCR2) from
kenaf, which is probably homologous with the previously
reported kenaf HcCCRI. HcCCR2 ubiquitously expressed
in different tissues and showed differential expression in
response to various stress treatments in different amplitude.
According to our knowledge, in this paper, for the first time
we have characterized expression pattern of kenaf CCR in
different tissues and under various stress treatments, though
further comparative investigation between two kenaf CCR
homologs are required to know the substrate specificity
and involvement in developmental lignification and stress
tolerance.
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