39,030 research outputs found

    Stress-energy Tensor Correlators in N-dim Hot Flat Spaces via the Generalized Zeta-Function Method

    Get PDF
    We calculate the expectation values of the stress-energy bitensor defined at two different spacetime points x,x′x, x' of a massless, minimally coupled scalar field with respect to a quantum state at finite temperature TT in a flat NN-dimensional spacetime by means of the generalized zeta-function method. These correlators, also known as the noise kernels, give the fluctuations of energy and momentum density of a quantum field which are essential for the investigation of the physical effects of negative energy density in certain spacetimes or quantum states. They also act as the sources of the Einstein-Langevin equations in stochastic gravity which one can solve for the dynamics of metric fluctuations as in spacetime foams. In terms of constitutions these correlators are one rung above (in the sense of the correlation -- BBGKY or Schwinger-Dyson -- hierarchies) the mean (vacuum and thermal expectation) values of the stress-energy tensor which drive the semiclassical Einstein equation in semiclassical gravity. The low and the high temperature expansions of these correlators are also given here: At low temperatures, the leading order temperature dependence goes like TNT^{N} while at high temperatures they have a T2T^{2} dependence with the subleading terms exponentially suppressed by e−Te^{-T}. We also discuss the singular behaviors of the correlators in the x′→xx'\rightarrow x coincident limit as was done before for massless conformal quantum fields.Comment: 23 pages, no figures. Invited contribution to a Special Issue of Journal of Physics A in honor of Prof. J. S. Dowke

    Super Jackstraws and Super Waterwheels

    Full text link
    We construct various new BPS states of D-branes preserving 8 supersymmetries. These include super Jackstraws (a bunch of scattered D- or (p,q)-strings preserving supersymmetries), and super waterwheels (a number of D2-branes intersecting at generic angles on parallel lines while preserving supersymmetries). Super D-Jackstraws are scattered in various dimensions but are dynamical with all their intersections following a common null direction. Meanwhile, super (p,q)-Jackstraws form a planar static configuration. We show that the SO(2) subgroup of SL(2,R), the group of classical S-duality transformations in IIB theory, can be used to generate this latter configuration of variously charged (p,q)-strings intersecting at various angles. The waterwheel configuration of D2-branes preserves 8 supersymmetries as long as the `critical' Born-Infeld electric fields are along the common direction.Comment: 23 pages, 10 figure

    Schwinger Effect in Non-parallel D1-branes: A Path Integral Approach

    Full text link
    We study the Schwinger effect in a system of non-parallel D1-branes for the bosonic strings using the path integral formalism. We drive the string pair creation rate by calculating the one loop vacuum amplitude of the setup in presence of the background electric filed defined along one of the D1-branes. We find an angle dependent minimum value for the background field and show that the decaying of vacuum into string pairs takes place for the field above this value. It is shown that in θ→π2\theta\rightarrow\frac{\pi}{2} limit the vacuum becomes stable and thus no pair creation occurs

    Lineal Trails of D2-D2bar Superstrings

    Full text link
    We study the superstrings suspended between a D2- and an anti-D2-brane. We quantize the string in the presence of some general configuration of gauge fields over the (anti-)D-brane world volumes. The interstring can move only in a specific direction that is normal to the difference of the electric fields of each (anti-)D-branes. Especially when the electric fields are the same, the interstring cannot move. We obtain the condition for the tachyons to disappear from the spectrum.Comment: 15 pages with 4 figures, referenced added, Sec. 5 on the spectrum made cleare

    Comment on Ds∗→Dsπ0D_s^* \to D_s \pi^0 Decay

    Full text link
    We calculate the rate for Ds∗→Dsπ0D_s^* \rightarrow D_s \pi^0 decay using Chiral Perturbation Theory. This isospin violating process results from π0\pi^0 - η\eta mixing, and its amplitude is proportional to (md−mu)/(ms−(mu+md)/2)(m_d - m_u)/\bigl(m_s-(m_u+m_d)/2 \bigr). Experimental information on the branching ratio for Ds∗→Dsπ0D_s^* \rightarrow D_s \pi^0 can provide insight into the pattern of SU(3)SU(3) violation in radiative D∗D^* decays.Comment: 7 pages with 2 figures not included but available upon request, CALT-68-191

    String Pair Creations in D-brane Systems

    Full text link
    We investigate the criterion, on the Born-Infeld background fields, for the open string pair creation to occur in Dpp-(anti-)Dpp-brane systems. Although the pair creation occurs generically in both Dpp-Dpp and Dpp-anti-Dpp systems for the cases which meet the criterion, it is more drastic in Dpp-anti-Dpp-brane systems by some exponential factor depending on the background fields. Various configurations exhibiting pair creations are obtained via duality transformations. These include the spacelike scissors and two D-strings (slanted at different angles) passing through each other. We raise the scissors paradox and suggest a resolution based on the triple junction in IIB setup.Comment: V2. 1+28 pages, 5 figures in JHEP3, minor changes, added reference

    Computer-Aided Modeling and Analysis of Power Processing Systems (CAMAPPS), phase 1

    Get PDF
    The large-signal behaviors of a regulator depend largely on the type of power circuit topology and control. Thus, for maximum flexibility, it is best to develop models for each functional block a independent modules. A regulator can then be configured by collecting appropriate pre-defined modules for each functional block. In order to complete the component model generation for a comprehensive spacecraft power system, the following modules were developed: solar array switching unit and control; shunt regulators; and battery discharger. The capability of each module is demonstrated using a simplified Direct Energy Transfer (DET) system. Large-signal behaviors of solar array power systems were analyzed. Stability of the solar array system operating points with a nonlinear load is analyzed. The state-plane analysis illustrates trajectories of the system operating point under various conditions. Stability and transient responses of the system operating near the solar array's maximum power point are also analyzed. The solar array system mode of operation is described using the DET spacecraft power system. The DET system is simulated for various operating conditions. Transfer of the software program CAMAPPS (Computer Aided Modeling and Analysis of Power Processing Systems) to NASA/GSFC (Goddard Space Flight Center) was accomplished
    • …
    corecore