50,278 research outputs found

    Stress-energy Tensor Correlators in N-dim Hot Flat Spaces via the Generalized Zeta-Function Method

    Get PDF
    We calculate the expectation values of the stress-energy bitensor defined at two different spacetime points x,x′x, x' of a massless, minimally coupled scalar field with respect to a quantum state at finite temperature TT in a flat NN-dimensional spacetime by means of the generalized zeta-function method. These correlators, also known as the noise kernels, give the fluctuations of energy and momentum density of a quantum field which are essential for the investigation of the physical effects of negative energy density in certain spacetimes or quantum states. They also act as the sources of the Einstein-Langevin equations in stochastic gravity which one can solve for the dynamics of metric fluctuations as in spacetime foams. In terms of constitutions these correlators are one rung above (in the sense of the correlation -- BBGKY or Schwinger-Dyson -- hierarchies) the mean (vacuum and thermal expectation) values of the stress-energy tensor which drive the semiclassical Einstein equation in semiclassical gravity. The low and the high temperature expansions of these correlators are also given here: At low temperatures, the leading order temperature dependence goes like TNT^{N} while at high temperatures they have a T2T^{2} dependence with the subleading terms exponentially suppressed by e−Te^{-T}. We also discuss the singular behaviors of the correlators in the x′→xx'\rightarrow x coincident limit as was done before for massless conformal quantum fields.Comment: 23 pages, no figures. Invited contribution to a Special Issue of Journal of Physics A in honor of Prof. J. S. Dowke

    Free wake analysis of hover performance using a new influence coefficient method

    Get PDF
    A new approach to the prediction of helicopter rotor performance using a free wake analysis was developed. This new method uses a relaxation process that does not suffer from the convergence problems associated with previous time marching simulations. This wake relaxation procedure was coupled to a vortex-lattice, lifting surface loads analysis to produce a novel, self contained performance prediction code: EHPIC (Evaluation of Helicopter Performance using Influence Coefficients). The major technical features of the EHPIC code are described and a substantial amount of background information on the capabilities and proper operation of the code is supplied. Sample problems were undertaken to demonstrate the robustness and flexibility of the basic approach. Also, a performance correlation study was carried out to establish the breadth of applicability of the code, with very favorable results

    Classical Strongly Coupled QGP: VII. Energy Loss

    Full text link
    We use linear response analysis and the fluctuation-dissipation theorem to derive the energy loss of a heavy quark in the SU(2) classical Coulomb plasma in terms of the l=1l=1 monopole and non-static structure factor. The result is valid for all Coulomb couplings Γ=V/K\Gamma=V/K, the ratio of the mean potential to kinetic energy. We use the Liouville equation in the collisionless limit to assess the SU(2) non-static structure factor. We find the energy loss to be strongly dependent on Γ\Gamma. In the liquid phase with Γ≈4\Gamma\approx 4, the energy loss is mostly metallic and soundless with neither a Cerenkov nor a Mach cone. Our analytical results compare favorably with the SU(2) molecular dynamics simulations at large momentum and for heavy quark masses.Comment: 18 pages, 15 figures. v2: added references, changed title, replaced figures for Fig. 7, corrected typo

    Super Jackstraws and Super Waterwheels

    Full text link
    We construct various new BPS states of D-branes preserving 8 supersymmetries. These include super Jackstraws (a bunch of scattered D- or (p,q)-strings preserving supersymmetries), and super waterwheels (a number of D2-branes intersecting at generic angles on parallel lines while preserving supersymmetries). Super D-Jackstraws are scattered in various dimensions but are dynamical with all their intersections following a common null direction. Meanwhile, super (p,q)-Jackstraws form a planar static configuration. We show that the SO(2) subgroup of SL(2,R), the group of classical S-duality transformations in IIB theory, can be used to generate this latter configuration of variously charged (p,q)-strings intersecting at various angles. The waterwheel configuration of D2-branes preserves 8 supersymmetries as long as the `critical' Born-Infeld electric fields are along the common direction.Comment: 23 pages, 10 figure

    New Regime of MHD Turbulence: Cascade Below Viscous Cutoff

    Full text link
    In astrophysical situations, e.g. in the interstellar medium (ISM), neutrals can provide viscous damping on scales much larger than the magnetic diffusion scale. Through numerical simulations, we have found that the magnetic field can have a rich structure below the dissipation cutoff scale. This implies that magnetic fields in the ISM can have structures on scales much smaller than parsec scales. Our results show that the magnetic energy contained in a wavenumber band is independent of the wavenumber and magnetic structures are intermittent and extremely anisotropic. We discuss the relation between our results and the formation of the tiny-scale atomic structure (TSAS).Comment: ApJ Letters, accepted (Feb. 10, 2002; ApJ, 566, L...); 10 pages, 3 figure
    • …
    corecore