888 research outputs found

    RELATIONSHIP BETWEEN UREA DECOMPOSITION AND CELL CLASSES OF RESERVOIR PHYTOPLANKTON IN THE NORTH HAN RIVER SYSTEM

    Get PDF
    The influence of natural phytoplankton cell classes upon the response of urea decomposition was investigated in four reservoirs in the North Han River System. The decomposition rate of urea was 0.3 to 29.4 μ mol urea・m⁻³・hr.⁻¹ in the light and 0.2 to 14.9 μ mol urea・m⁻³・hr.⁻¹ in the dark. Much higher decomposition rates were observed at the eutrophic stations in Lake Euiam. The urea decomposition in the smaller fraction (25 μm). No differences in the ratios of urea decomposition to chlorophyll-a or photosynthesis among three fractions were observed. This might be mainly due to the difference in the standing crop of phytoplankton. These trends were no different between sampling areas and reservoirs. The greater part of urea decomposition was the phase of CO₂ liberation rate into the water. Eight to 50% of the urea decomposition was incorporated into the particulate phase in the light, but this was much lower in the dark. The results of the present study indicate that urea in reservoirs decomposes by phytoplankton rather than bacteria and the phytoplankton would be competitive to bacteria.Article信州大学理学部付属諏訪臨湖実験所報告 7: 31-40(1991)departmental bulletin pape

    Optical spectroscopy of gan microcavities with thicknesses controlled using a plasma etch-back

    Get PDF
    The effect of an etch-back step to control the cavity length within GaN-based microcavities formed between two dielectric Bragg mirrors was investigated using photoluminescence and reflectivity. The structures are fabricated using a combination of a laser lift-off technique to separate epitaxial III-N layers from their sapphire substrates and electron-beam evaporation to deposit silica/zirconia multilayer mirrors. The photoluminescence measurements reveal cavity modes from both etched and nonetched microcavities. Similar cavity finesses are measured for 2.0 and 0.8 mm GaN cavities fabricated from the same wafer, indicating that the etchback has had little effect on the microcavity quality. For InGaN quantum well samples the etchback is shown to allow controllable reduction of the cavity length. Two etch steps of 100 nm are demonstrated with an accuracy of approximately 5%. The etchback, achieved using inductively coupled plasma and wet chemical etching, allows removal of the low-quality GaN nucleation layer, control of the cavity length, and modification of the surface resulting from lift-off

    Family Unification with SO(10)

    Get PDF
    Unification based on the group SO(10)^3 \times S_3 is studied. Each family has its own SO(10) group, and the S_3 permutes the three families and SO(10) factors. This is the maximal local symmetry for the known fermions. Family unification is achieved in the sense that all known fermions are in a single irreducible multiplet of the symmetry. The symmetry suppresses SUSY flavor changing effects by making all squarks and sleptons degenerate in the symmetry limit. Doublet-triplet splitting can arise simply, and non-trivial structure of the quark and lepton masses emerges from the gauge symmetry, including the "doubly lopsided" form.Comment: 11 pages, references adde

    A Discussion on Dirac Field Theory, No-Go Theorems and Renormalizability

    Full text link
    We study Dirac field equations coupled to electrodynamics with metric and torsion fields: we discuss how special spinorial solutions are incompatible with torsion; eventually these results will be used to sketch a discussion on the problem of renormalizability of point-like particles.Comment: 10 page

    bsγb \to s \gamma Decay and Right-handed Top-bottom Charged Current

    Full text link
    We introduce an anomalous top quark coupling (right-handed current) into Standard Model Lagrangian. Based on this, a more complete calculation of bsγb \to s\gamma decay including leading log QCD corrections from mtopm_{top} to MWM_W in addition to corrections from MWM_{W} to mbm_b is given. The inclusive decay rate is found to be suppressed comparing with the case without QCD running from mtm_t to MWM_W except at the time of small values of fRtb|f_R^{tb}|. e.g. when fRtb=0.08f_R^{tb}=-0.08, it is only 1/101/10 of the value given before. As fRtb|f_R^{tb}| goes smaller, this contribution is an enhancement like standard model case. From the newly experiment of CLEO Collaboration, strict restrictions to parameters of this top-bottom quark coupling are found.Comment: 20 Pages, 2 figures( ps file uuencoded)

    Dynamic assembly of Hda and the sliding clamp in the regulation of replication licensing

    Get PDF
    Regulatory inactivation of DnaA (RIDA) is one of the major regulatory mechanisms of prokaryotic replication licensing. In RIDA, the Hda-sliding clamp complex loaded onto DNA directly interacts with adenosine triphosphate (ATP)-bound DnaA and stimulates the hydrolysis of ATP to inactivate DnaA. A prediction is that the activity of Hda is tightly controlled to ensure that replication initiation occurs only once per cell cycle. Here, we determined the crystal structure of the Hda-�� clamp complex. This complex contains two pairs of Hda dimers sandwiched between two �� clamp rings to form an octamer that is stabilized by three discrete interfaces. Two separate surfaces of Hda make contact with the �� clamp, which is essential for Hda function in RIDA. The third interface between Hda monomers occludes the active site arginine finger, blocking its access to DnaA. Taken together, our structural and mutational analyses of the Hda-�� clamp complex indicate that the interaction of the �� clamp with Hda controls the ability of Hda to interact with DnaA. In the octameric Hda-�� clamp complex, the inability of Hda to interact with DnaA is a novel mechanism that may regulate Hda function. ? The Author(s) 2017.113Ysciescopu

    Geodesic motions in extraordinary string geometry

    Full text link
    The geodesic properties of the extraordinary vacuum string solution in (4+1) dimensions are analyzed by using Hamilton-Jacobi method. The geodesic motions show distinct properties from those of the static one. Especially, any freely falling particle can not arrive at the horizon or singularity. There exist stable null circular orbits and bouncing timelike and null geodesics. To get into the horizon {or singularity}, a particle need to follow a non-geodesic trajectory. We also analyze the orbit precession to show that the precession angle has distinct features for each geometry such as naked singularity, black string, and wormhole.Comment: 15 pages, 11 figure

    b -> s gamma in the left-right supersymmetric model

    Full text link
    The rare decay bsγb \to s \gamma is studied in the left-right supersymmetric model. We give explicit expressions for all the amplitudes associated with the supersymmetric contributions coming from gluinos, charginos and neutralinos in the model to one-loop level. The branching ratio is enhanced significantly compared to the standard model and minimal supersymmetric standard model values by contributions from the right-handed gaugino and squark sector. We give numerical results coming from the leading order contributions. If the only source of flavor violation comes from the CKM matrix, we constrain the scalar fermion-gaugino sector. If intergenerational mixings are allowed in the squark mass matrix, we constrain such supersymmetric sources of flavor violation. The decay bsγb \to s \gamma sets constraints on the parameters of the model and provides distinguishing signs from other supersymmetric scenarios.Comment: 12 figure
    corecore