15 research outputs found

    Does a colour-coded blood pressure diary improve blood pressure control for patients in general practice: The CoCo trial

    Get PDF
    BACKGROUND: Insufficient blood pressure control is a frequent problem despite the existence of effective treatment. Insufficient adherence to self-monitoring as well as to therapy is a common reason. Blood pressure self-measurement at home (Home Blood Pressure Measurement, HBPM) has positive effects on treatment adherence and is helpful in achieving the target blood pressure. Only a few studies have investigated whether adherence to HBPM can be improved through simple measures resulting also in better blood pressure control. OBJECTIVE: Improvement of self-monitoring and improved blood pressure control by using a new colour-coded blood pressure diary. OUTCOME: Primary outcome: Change in systolic and/or diastolic blood pressure 6 months after using the new colour-coded blood pressure diary.Secondary outcome: Adherence to blood pressure self-measurement (number of measurements/entries). METHODS/DESIGN: Randomised controlled study.Population: 138 adult patients in primary care with uncontrolled hypertension despite therapy. The control group uses a conventional blood pressure diary; the intervention group uses the new colour-coded blood pressure diary (green, yellow, red according a traffic light system). EXPECTED RESULTS/CONCLUSION: The visual separation and entries in three colour-coded areas reflecting risk (green: blood pressure in the target range 140/>90 mmHg, red: blood pressure in danger zone > 180 mmHg/>110 mmHg) lead to better self-monitoring compared with the conventional (non-colour-coded) blood pressure booklet. The colour-coded, visualised information supports improved perception (awareness and interpretation) of blood pressure and triggers correct behaviour, in the means of improved adherence to the recommended treatment as well as better communication between patients and doctors resulting in improved blood pressure control. TRIAL REGISTRATION: ClinicalTrials.gov ID NCT01013467

    Creation and annihilation of topological meron pairs in in-plane magnetized films

    Get PDF
    Merons which are topologically equivalent to one-half of skyrmions can exist only in pairs or groups in two-dimensional (2D) ferromagnetic (FM) systems. The recent discovery of meron lattice in chiral magnet Co8Zn9Mn3 raises the immediate challenging question that whether a single meron pair, which is the most fundamental topological structure in any 2D meron systems, can be created and stabilized in a continuous FM film? Utilizing winding number conservation, we develop a new method to create and stabilize a single pair of merons in a continuous Py film by local vortex imprinting from a Co disk. By observing the created meron pair directly within a magnetic field, we determine its topological structure unambiguously and explore the topological effect in its creation and annihilation processes. Our work opens a pathway towards developing and controlling topological structures in general magnetic systems without the restriction of perpendicular anisotropy and Dzyaloshinskii-Moriya interaction

    Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites

    No full text
    Perovskite solar cells are remarkably efficient; however, they are prone to degradation in water, oxygen and ultraviolet light. Cation engineering in 3D perovskite absorbers has led to reduced degradation. Alternatively, 2D Ruddlesden–Popper layered perovskites exhibit improved stability, but have not delivered efficient solar cells so far. Here, we introduce n-butylammonium cations into a mixed-cation lead mixed-halide FA0.83Cs0.17Pb(IyBr1−y)3 3D perovskite. We observe the formation of 2D perovskite platelets, interspersed between highly orientated 3D perovskite grains, which suppress non-radiative charge recombination. We investigate the relationship between thin-film composition, crystal alignment and device performance. Solar cells with an optimal butylammonium content exhibit average stabilized power conversion efficiency of 17.5 ± 1.3% with a 1.61-eV-bandgap perovskite and 15.8 ± 0.8% with a 1.72-eV-bandgap perovskite. The stability under simulated sunlight is also enhanced. Cells sustain 80% of their ‘post burn-in’ efficiency after 1,000 h in air, and close to 4,000 h when encapsulated.</p

    Magnetoelectric domains and their switching mechanism in a Y-type hexaferrite

    No full text
    By employing resonant X-ray microdiffraction, we image the magnetisation and magnetic polarity domains of the Y-type hexaferrite Ba0.5_{0.5}Sr1.5_{1.5}Mg2_2Fe12_{12}O22_{22}. We show that the magnetic polarity domain structure can be controlled by both magnetic and electric fields, and that full inversion of these domains can be achieved simply by reversal of an applied magnetic field in the absence of an electric field bias. Furthermore, we demonstrate that the diffraction intensity measured in different X-ray polarisation channels cannot be reproduced by the accepted model for the polar magnetic structure, known as the 2-fan transverse conical (TC) model. We propose a modification to this model, which achieves good quantitative agreement with all of our data. We show that the deviations from the TC model are large, and may be the result of an internal magnetic chirality, most likely inherited from the parent helical (non-polar) phase

    Strain engineering a multiferroic monodomain in thin-film BiFeO3

    No full text
    The presence of domains in ferroic materials can negatively affect their macroscopic properties and hence their usefulness in device applications. From an experimental perspective, measuring materials comprising multiple domains can complicate the interpretation of material properties and their underlying mechanisms. In general, BiFeO3 films tend to grow with multiple magnetic domains and often contain multiple ferroelectric and ferroelastic domain variants. By growing (111)-oriented BiFeO3 films on an orthorhombic TbScO3 substrate, we are able to overcome this, and, by exploiting the magnetoelastic coupling between the magnetic and crystal structures, bias the growth of a given magnetic-, ferroelectric-, and structural-domain film. We further demonstrate the coupling of the magnetic structure to the ferroelectric polarisation by showing the magnetic polarity in this domain is inverted upon 180° ferroelectric switching.</p

    Coherent magnetoelastic domains in multiferroic films

    No full text
    The physical properties of epitaxial films can fundamentally differ from those of bulk single crystals even above the critical thickness. By a combination of non-resonant x-ray magnetic scattering, neutron diffraction and vector-mapped x-ray magnetic linear dichroism photoemission electron microscopy, we show that epitaxial (111)-BiFeO3 films support sub-micron antiferromagnetic domains, which are magneto-elastically coupled to a coherent crystallographic monoclinic twin structure. This unique texture, which is absent in bulk single crystals, should enable control of magnetism in BiFeO3 film devices via epitaxial strain

    The effect of divorce and single costs on marital status Theory and evidence from the United Kingdom

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:9349.95704(SU-BS-DE-WP--95/1) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Membranous nephropathy and cerebellar degeneration with anti-GAD antibodies in type 2 diabetes mellitus

    No full text
    Aims: To study the potential pathogenic significance of the coexistence of membranous nephropathy, cerebellar degeneration and anti-glutamic acid decarboxylase (GAD) autoantibodies in patients with diabetes. Methods: We performed a direct immunocytochemistry on human kidney slides, electron microscopy on human kidney biopsy, direct immunofluorescence on human kidney biopsy. Baboon and rat kidney cell lines were fractionated and subjected to western blotting with antibodies to GAD. Results: In this patient we demonstrate the presence of autoantibodies to GAD, which is highly enriched in podocytes plasma membrane and tubular cells of the kidney as well as sub-endothelial IgG and complement C3 deposits in the glomerular basement membrane (GBM). Conclusions: We hypothesize the existence in this patient of a common autoimmune pathogenic mechanism with GAD as the autoantigenic determinant, underlying cerebellar degeneration and membranous nephropathy
    corecore