166 research outputs found

    3D numerical modelling of twisting cracks under bending and torsion of skew notched beams

    Get PDF
    The testing of mode III and mixed mode failure is every so often encountered in the dedicated literature of mechanical characterization of brittle and quasi-brittle materials. In this work, the application of the mixed strain displacement e-ue-u finite element formulation to three examples involving skew notched beams is presented. The use of this FE technology is effective in problems involving localization of strains in softening materials. The objectives of the paper are: (i) to test the mixed formulation in mode III and mixed mode failure and (ii) to present an enhancement in terms of computational time given by the kinematic compatibility between irreducible displacement-based and the mixed strain-displacement elements. Three tests of skew-notched beams are presented: firstly, a three point bending test of a PolyMethyl MethaAcrylate beam; secondly, a torsion test of a plain concrete prismatic beam with square base; finally, a torsion test of a cylindrical beam made of plain concrete as well. To describe the mechanical behavior of the material in the inelastic range, Rankine and Drucker-Prager failure criteria are used in both plasticity and isotropic continuum damage formats. The proposed mixed formulation is capable of yielding results close to the experimental ones in terms of fracture surface, peak load and global loss of carrying capability. In addition, the symmetric secant formulation and the compatibility condition between the standard irreducible method and the strain-displacement one is exploited, resulting in a significant speedup of the computational procedure.Peer ReviewedPostprint (author's final draft

    Effect of the tool tilt angle on the heat generation and the material flow in friction stir welding

    Get PDF
    This work studies the effect of the tool tilt angle on the generated heat and the material flow in the work pieces joint by Friction Stir Welding (FSW). An apropos kinematic framework together with a two-stage speed-up strategy is adopted to simulate the FSW problem. The effect of tilt angle on the FSWelds is modeled through the contact condition by modifying an enhanced friction model. A rotated friction shear stress is proposed, the angle of rotation depending on the process parameters and the tilt angle. The proposed rotation angle is calibrated by the experimental data provided for a tilt angle 2.5°. The differences of generated heat and material flow for the cases of tool with tilt angle of 0° and 2.5° are discussed. It is concluded that due to the higher temperature, softer material and greater frictional force in the trailing side of the tool, the material flow in the rear side of the FSW tool with the title angle is considerably enhanced, which assists to prevent the generation of defect.Peer ReviewedPostprint (published version

    Smeared crack approach: Back to the original track

    Get PDF
    This paper reviews briefly the formulations used over the last 40 years for the solution of problems involving tensile cracking, both with the discrete and smeared crack approaches. The paper focuses in the smeared approach, identifying as its main drawbacks the observed mesh-size and mesh-bias spurious dependence when the method is applied “straightly”. A simple isotropic local damage constitutive model is considered, and the (exponential) softening modulus is regularized according to the material fracture energy and the element size. The continuum and discrete mechanical problems corresponding to both the weak discontinuity (smeared cracks) and strong discontinuity (discrete cracks) approaches are analyzed and the question of propagation of the strain localization band (crack) is identified as the main difficulty to be overcome in the numerical procedure. A tracking technique is used to ensure uniqueness of the solution, attaining the necessary stability and convergence properties of the corresponding discrete finite element formulation. Numerical examples show that the formulation derived is well posed, stable and remarkably robust. As a consequence, the results obtained do not suffer from spurious meshsize or mesh-bias dependence, comparing very favorably with those obtained with other fracture and continuum mechanics approaches

    Size effect and localization in J2 plasticity

    Get PDF
    This paper studies the phenomenon of structural size effect and strain localization in J2 plasticity. Size effect is here understood as the change in the response of a given structure when the spatial dimensions are scaled up or down while the geometry and other relevant properties of the structure are preserved. The work exploits the advantages of the mixed displacement–pressure formulation in incompressible or quasi-incompressible situations. Elasto-J2-plastic constitutive behaviour with regularized softening is considered. Stability issues are discussed to ensure existence and uniqueness of the solution of the corresponding discrete finite element formulation. Numerical examples show that the formulation derived is able to solve a wide range of structural scales, including real life engineering applications. The results obtained do not suffer from spurious mesh dependence. Furthermore, the formulation includes the classical theories of perfect plasticity and linear fracture mechanics as limit cases

    Mesh objective tensile cracking via a local continuum damage model and a crack tracking technique

    Get PDF
    This paper describes a procedure for the solution of problems involving tensile cracking using the so-called smeared crack approach, that is, standard finite elements with continuous displacement fields and a standard local constitutive model with strain-softening. An isotropic Rankine damage model is considered. The softening modulus is adjusted according to the material fracture energy and the element size. The resulting continuum and discrete mechanical problems are analyzed and the question of predicting correctly the direction of crack propagation is deemed as the main difficulty to be overcome in the discrete problem. It is proposed to use a crack tracking technique to attain the desired stability and convergence properties of the corresponding formulation. Numerical examples show that the resulting procedure is well-posed, stable and remarkably robust; the results obtained do not seem to suffer from spurious mesh-size or mesh-bias dependence

    Smeared crack approach: back to the original track

    Get PDF
    This paper briefly reviews the formulations used over the last 40 years for the solution of problems involving tensile cracking, with both the discrete and the smeared crack approaches. The paper focuses on the smeared approach, identifying as its main drawbacks the observed mesh‐size and mesh‐bias spurious dependence when the method is applied ‘straightly’. A simple isotropic local damage constitutive model is considered, and the (exponential) softening modulus is regularized according to the material fracture energy and the element size. The continuum and discrete mechanical problems corresponding to both the weak discontinuity (smeared cracks) and the strong discontinuity (discrete cracks) approaches are analysed and the question of propagation of the strain localization band (crack) is identified as the main difficulty to be overcome in the numerical procedure. A tracking technique is used to ensure stability of the solution, attaining the necessary convergence properties of the corresponding discrete finite element formulation. Numerical examples show that the formulation derived is stable and remarkably robust. As a consequence, the results obtained do not suffer from spurious mesh‐size or mesh‐bias dependence, comparing very favourably with those obtained with other fracture and continuum mechanics approaches

    Stabilized mixed explicit finite element formulation for compressible and nearly-incompressible solids

    Get PDF
    El presente estudio presenta una formulación mixta de elementos finitos capaz de abordar problemas quasiincompresibles en forma explícita. Esta formulación se aplica a elementos con interpolaciones independientes e iguales de desplazamientos y deformaciones, estabilizadas mediante subescalas variacionales (VMS). Como continuación del estudio presentado en la referencia [23] , en la que se introdujo la subescala de las deformaciones, en este trabajo se incluyen los efectos de la sub-escala de los desplazamientos, con el fin de estabilizar el campo de las presiones. La formulación evita la condición de Ladyzhenskaya-Babuska-Brezzi (LBB) y sólo requiere la resolución de un sistema diagonal de ecuaciones. En este artículo se tratan también los principales aspectos de implementación. Finalmente, ejemplos de validación numérica muestran el comportamiento de estos elementos en comparación con la formulación irreducible.This study presents a mixed finite element formulation able to address nearly-incompressible problems explicitly. This formulation is applied to elements with independent and equal interpolation of displacements and strains, stabilized by variational subscales (VMS). As a continuation of the study presented in reference [23], in which the strains sub-scale was introduced, in this work the effects of sub-scale displacements are included, in order to stabilize the pressure field. The formulation avoids the Ladyzhenskaya-Babuska-Brezzi (LBB) condition and only requires the solution of a diagonal system of equations. The main aspects of implementation are also discussed. Finally, numerical examples validate the behaviour of these elements compared with the irreductible formulation.Peer ReviewedPostprint (published version

    Explicit mixed strain–displacement finite elements for compressible and quasi-incompressible elasticity and plasticity

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/ 10.1007/s00466-016-1305-zThis paper presents an explicit mixed finite element formulation to address compressible and quasi-incompressible problems in elasticity and plasticity. This implies that the numerical solution only involves diagonal systems of equations. The formulation uses independent and equal interpolation of displacements and strains, stabilized by variational subscales. A displacement sub-scale is introduced in order to stabilize the mean-stress field. Compared to the standard irreducible formulation, the proposed mixed formulation yields improved strain and stress fields. The paper investigates the effect of this enhancement on the accuracy in problems involving strain softening and localization leading to failure, using low order finite elements with linear continuous strain and displacement fields (P1P1 triangles in 2D and tetrahedra in 3D) in conjunction with associative frictional Mohr–Coulomb and Drucker–Prager plastic models. The performance of the strain/displacement formulation under compressible and nearly incompressible deformation patterns is assessed and compared to analytical solutions for plane stress and plane strain situations. Benchmark numerical examples show the capacity of the mixed formulation to predict correctly failure mechanisms with localized patterns of strain, virtually free from any dependence of the mesh directional bias. No auxiliary crack tracking technique is necessary.Peer ReviewedPostprint (author's final draft

    Mesh objective tensile cracking via a local continuum damage model and a crack tracking technique

    Get PDF
    This paper describes a procedure for the solution of problems involving tensile cracking using the so-called smeared crack approach, that is, standard finite elements with continuous displacement fields and a standard local constitutive model with strain-softening. An isotropic Rankine damage model is considered. The softening modulus is adjusted according to the material fracture energy and the element size. The resulting continuum and discrete mechanical problems are analyzed and the question of predicting correctly the direction of crack propagation is deemed as the main difficulty to be overcome in the discrete problem. It is proposed to use a crack tracking technique to attain the desired stability and convergence properties of the corresponding formulation. Numerical examples show that the resulting procedure is well-posed, stable and remarkably robust; the results obtained do not seem to suffer from spurious mesh-size or mesh-bias dependence
    corecore