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Abstract

This paper briefly reviews the formulations used over the last 40
years for the solution of problems involving tensile cracking, both with
the discrete and smeared crack approaches. The paper focuses in the
smeared approach, identifying as its main drawbacks the observed
mesh-size and mesh-bias spurious dependence when the method is
applied “straightly”. A simple isotropic local damage constitutive
model is considered, and the (exponential) softening modulus is reg-
ularized according to the material fracture energy and the element
size. The continuum and discrete mechanical problems corresponding
to both the weak discontinuity (smeared cracks) and strong discon-
tinuity (discrete cracks) approaches are analyzed and the question of
propagation of the strain localization band (crack) is identified as the
main difficulty to be overcome in the numerical procedure. A track-
ing technique is used to ensure stability of the solution, attaining the
necessary convergence properties of the corresponding discrete finite
element formulation. Numerical examples show that the formulation
derived is stable and remarkably robust. As a consequence, the re-
sults obtained do not suffer from spurious mesh-size or mesh-bias de-
pendence, comparing very favorably with those obtained with other
fracture and continuum mechanics approaches.
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1 Introduction
Cracking is an essential feature of the behaviour of concrete structures and,
therefore, tensile cracking must be taken into account in predicting their
ultimate load capacity as well as service behavior.
The tensile fracture of concrete is regarded as (quasi)brittle. Concrete

has no yield behavior as exhibited by metals. Its tensile stress-strain dia-
gram is nearly linear up to the peak stress, whereupon it immediately starts
to descent. In spite of this, concrete shows considerable toughness. This
toughness is related to the existence of a descending branch in the nominal
stress-strain curve. This is known as strain softening.
With the advent of digital computers and computational mechanics, two

different concepts of the phenomenon of tensile cracking have evolved: the
discrete and the smeared crack approaches. Although nowadays many struc-
tural engineers and computational solid FE codes are decanted in favor of the
smeared crack approach, the observed mesh-size and mesh-bias dependence
make the academic world very suspicious about the solutions obtained within
this format. A lot of effort has been spent in the last 40 years to investigate
and remedy the observed drawbacks of this approach.
In recent papers ([1] and [2]) it is shown that mesh objective solutions,

convergent upon refinement and exhibiting highly localized shear bands (or
slip lines), can be obtained using local J2-plasticity and damage models.
This is achieved by (i) using the suitable mixed format of the balance equa-
tions and (ii) using an stabilization technique especially designed to stabilize
the selected interpolation fields for the primary variables (displacements and
pressure). Hence, it may be concluded that with the appropriate continuum
framework and with local constitutive models, the problem can be solved
if the shortcomings of the spatial discretization used are satisfactorily sur-
mounted.
As a consequence, the objectives of this paper are threefold: (i) to investi-

gate the numerical difficulty that causes the mesh bias encountered in tensile
localization problems when using the classical smeared crack approach, (ii) to
propose an auxiliary numerical procedure to overcome the identified numeri-
cal difficulty, and (iii) to assess the performance of the proposed procedure by
means of solving selected numerical examples which exhibit tensile cracking.
The outline of the paper is as follows. In the next section we briefly

review the main historical developments occurred both in the discrete and
smeared crack approaches in the last decades. Then, a simple isotropic scalar
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Rankine damage model, suitable for degradation under tensile straining, is
presented. The necessary regularization of the softening modulus according
to the size of the elements inside the localization band is discussed. Later,
the corresponding standard irreducible boundary value problems for the so-
called weak and strong discontinuity approaches are formulated. Also, the
well-known difficulties of solving localization problems using the standard,
weak discontinuity, local formulation are explained. Tracking of the crack
through the fixed FE mesh is presented as a remedy to overcome this last
difficulty. Finally, selected numerical examples are presented to assess the
present formulation and to show the attained benefits as compared to the
“straight” use of the standard local formulation.

2 Discrete and smeared crack approaches

2.1 Discrete crack approach

In the earliest applications of the FEM to concrete structures, back in the
1960’s ([3], [4], [5]), cracks were modelled discretely (DC), by separation of
nodal points initially occupying the same spatial position. An obvious re-
striction of such models is that cracks can only be formed along the element
boundaries (Fig. 1a). Thus, the response is strongly mesh-dependent. Fur-
thermore, when a crack propagates, the topology of the mesh is changed,
and the updating procedures are time consuming. The DC approach was
later refined so that new elements could be introduced whose boundaries
were along the spreading crack (Fig. 1b). This obviously reduces the mesh
dependency of the approach, but then remeshing techniques are required and
the computing time increases.
Although the primitive studies had been based in a simple maximum

tensile stress criterion to decide on the moment of crack propagation, it was
recognized very early that the stress and strain fields that develop at the
tip of the crack are singular and stress criteria were not reliable. Crack
propagation was then based on energy criteria. Also, it was noted that
standard FE were not appropriate to capture these singular stress and strain
fields [6]; consequently, special FE were developed (see reference [7]).
Alternatively, in the last decade, an effort has been made to tackle the

discretization problem directly. Recently, Belytschko and coworkers ([8], [9],
[10]) have introduced the so-called extended finite element method (X-FEM),
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which effectively overcomes most of the cited disadvantages of the DC ap-
proach. The X-FEM allows for crack propagation without remeshing, at
the expense of tracking the advance of the crack through the FE mesh and
progressively enriching the nodal degrees of freedom with new ones that
represent both the displacement jumps across the crack and the developed
singular field at the tip of the advancing crack (Fig. 1c, where the “enriched”
nodes are marked).
Another of these efforts to model discrete cracks without the need of

remeshing is the so-called strong discontinuity approach ([11], [12], [13], [14],
[15], [16]). The strong discontinuity concept does not really depart from the
usual continuum mechanics framework (its theoretical formulation is very
similar to that of contact problems) but it leads to new formulations for
finite elements with embedded discontinuities, depending on the kinematical
and statical assumptions adopted. Interestingly enough, their application
invariably needs the use of tracking algorithms ([14], [16], [17], [18]), in order
to establish which elements lie in the crack path and need to be enriched

(a) (b)

(c) (d)

Figure 1: Discrete approaches to crack propagation: (a) without remesh-
ing, (b) with remeshing, (c) with nodal enrichment and (d) with elemental
enrichment
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(Fig. 1d, where the elements with “embedded” discontinuities are marked).
This, as the explicit control on the energy dissipated in the formation of the
crack, represents another link with the well established tradition of fracture
mechanics.

2.2 Smeared crack approach

The smeared crack (SC) approach comes directly from computational con-
tinuum mechanics. This means that, at least initially, the criteria for crack
propagation and, eventually, the prediction of the direction of propagation
came directly from this theory, which is, mostly, based on failure criteria
expressed in terms of stresses or strains. SC models do not account for dis-
continuities in the topology of the FE mesh, so remeshing is unnecessary
(Fig. 2a). On the contrary, the cracked material is assumed to remain a con-
tinuum and the mechanical properties (stiffness and strength) are modified
to account for the effect of cracking, according to the evolving states of strain
and/or stress. This leads to the concept of generalized constitutive models,
strongly nonlinear and with strain softening.
This approach was first used by Rashid in his 1968 historical paper [19]

to study prestressed concrete pressure vessels. It must be said that the sim-
plicity of this concept caught the attention of the engineering community
immediately and, during many years, the smeared crack concept practically
monopolized the field of crack propagation. The approach can be imple-
mented in any nonlinear FE code by simply writing a routine for a new

(a) (b)

Figure 2: Smeared approaches to crack propagation: (a) without remeshing
and (b) with remeshing
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material constitutive model. Even today, more than 35 years later, most of
the commercial FE codes use this approach, with little refinement over the
original Rashid’s ideas.
Unfortunately, it was realized in the 1970’s that if a smeared crack is

only one element across, the total energy dissipated in the cracking process is
proportional to the size (the volume) of the element. Upon mesh refinement,
for infinitesimally small elements, the dissipated energy vanishes. This is
unacceptable from the physical point of view. The problem was satisfactorily
solved in 1983, when Bazant and Oh [21] proposed the crack band model,
which is essentially identical to the previous Hillerborg’s [20] cohesive crack
model, but developed in the context of continuum mechanics and, therefore,
easily implemented in standard FE codes. These models showed that the
always controversial concept of strain softening should not be considered as
a characteristic of the material, but it is related to the fracture energy of
the material and the size of the FE crossed by the smeared crack. Today,
most of the commercial FE codes implement models with strain softening
according to this idea of relating the dissipated energy to the fracture energy
of the material.
In the 1980’s, the constitutive models used were mostly orthotropic and

max. principal stress driven. A lot of effort was devoted to the apparent
“stress locking” effect that was observed when the directions of principal
strain rotated along the analysis. Reference [22] presents a review of damage-
based approaches for the fracture of quasi-brittle materials, linking them to
the now old-fashioned, although still very popular, fixed and rotating smeared
crack models of those years.
Since the 1990’s, isotropic damage or plasticity models are usually pre-

ferred to model crack propagation. This choice implies that the macroscopic
anisotropy of the structural behaviour has to be captured by means of the
finite element approximation to within the resolution of the adopted mesh
([23], [24], [25]).
But once the problem of mesh-size dependence was quite satisfactorily

overcome, a more difficult one was recognized. FE solutions based on SC
suffer from mesh-bias dependence in such a strong manner that it can not
be ignored. However, if the spatial discretization is designed in such way
that an “appropriate” path for the advancing crack is available, the solutions
obtained are satisfactory (see Fig. 2b). The well-known fact that “well-
aligned” meshes produce good results strongly suggests that the difficulty
lies in the spatial discretization procedure.
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However, this evidence has not been generally recognized. Up to now,
the disagreeable effects of mesh dependence have been attributed to the fact
that, when strain-softening occurs and the slope of the local stress-strain
curve becomes negative, the governing equations of the continuum problem
lose their “natural” elliptic character. To remedy this, many so-called non-
local constitutive models have been proposed in the last decade in different
versions (micropolar models ([26]), gradient-enhanced models ([26], [27], [28],
[29], [30])). All these strategies introduce a “localization limiter” (a length
parameter) into the problem that effectively precludes the occurrence of sharp
displacement gradients (strains).

3 Isotropic Rankine damage model

3.1 Constitutive model

The constitutive equation for the isotropic damage model is defined as:

σ = (1− d) σ = (1− d) C : ε (1)

where the effective stresses σ, σ = C : ε, can be computed in terms of the
total strain tensor ε, ε =∇su, where u are the displacements, (:) denotes
the double contraction and d, the damage index, is an internal-like scalar
variable whose definition and evolution is given below.
In the present work, the equivalent stress will assume the following form:

τ = k σ̄1 l (2)

where σ̄1 is the largest principal effective stress and k·l are the Macaulay
brackets (kxl = x, if x ≥ 0, kxl = 0, if x < 0).
With this definition for the equivalent effective stress, the damage crite-

rion, Φ, is introduced as:

Φ (τ , r) = τ − r ≤ 0 (3)

where r is an internal stress-like variable that is interpreted as the cur-
rent damage threshold, in the sense that its value controls the size of the
(monotonically) expanding damage surface. The initial value of the damage
threshold is ro = σo, where σo is the initial uniaxial damage stress.
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The expansion of the damage bounding surface for loading, unloading
and reloading conditions is controlled by the Kuhn-Tucker relations and the
damage consistency condition, which are

ṙ ≥ 0 Φ (τ , r) ≤ 0 ṙΦ (τ , r) = 0 (4a)

if Φ (τ , r) = 0 then ṙ Φ̇ (τ , r) = 0 (4b)

leading, in view of Eq. (3), to the loading condition

ṙ = τ̇ (5)

This, in turn, leads to the explicit definition of the current values of the
internal variable r in the form

r = max { ro, max(τ )} (6)

Finally, the damage index d = d(r) is explicitly defined in terms of the
corresponding current value of the damage threshold, so that it is a monoton-
ically increasing function such that 0 ≤ d ≤ 1. In this work, we will use
the following exponential function:

d(r) = 1− ro
r
exp −2HS r − ro

ro
ro ≤ r (7)

where HS ≥ 0 is the softening parameter.

3.2 Strain-softening and fracture width regularization

In FE analysis, the straight use of strain softening constitutive models entails
the loss of objectivity of the results, in the sense that the strains tend to
localize in a band that is only one element across, independently of the
element size he. Upon mesh refinement, as he tends to zero, strains tend to
concentrate on a band of zero thickness (a geometrical line), and no energy
is dissipated in the failure process. Clearly, this is physically unacceptable.
In order to remedy this well-accounted for fact, Bazant and Oh [21]

proposed the use of the so-called fracture energy regularization technique,
nowadays used in many FE applications. This technique is based on the as-
sumption that dissipation takes place in a band only one element thickness,
irrespective of the element size. The basic concept consists on modifying
the softening law in such a way that the energy dissipated over a completely
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degraded finite element be equal to a given value, which depends on the
fracture energy of the material and on the element size.
In each element, the computational width of the fracture zone is called

the element characteristic length lch [31]. The specific dissipated energy D is
then adjusted for each element so that the equation

D lch = Gf (8)

holds, where Gf is the mode I fracture energy of the material, regarded to
be a material property. This makes the softening modulus HS dependent on
the element size.
For the isotropic damage model with exponential softening it can be

proved that the specific dissipated energy is

D = 1 +
1

HS

σ2o
2E

(9)

and, therefore

HS =
HS lch

1−HS lch
≥ 0 (10)

where HS = σ2o/ (2EGf) depends only on the material properties, as Gf is
the mode I fracture energy per unit area, σo is the uniaxial strength and E is
the Young’s modulus. For linear simplicial elements, the characteristic length
can be taken as the representative size of the element, lch = he. Assuming
that the elements are equilateral, the size of the element can be computed as
h2e = 4/

√
3 Ae for triangular elements, Ae being the area of the element.

It is clear fromEq. (10) that this calibration procedure implies a limitation
on the maximum size of the finite elements used in the mesh, he ≤ 1/HS,
which depends only on the material properties. For a given set of material
properties, the larger the elements, the steeper would be the softening branch
of the response, and, locally, the fracture process would be more brittle. For
he > 1/HS the dissipated energy D = Gf/he is smaller than the elastic
energy stored by the element, and fracture cannot occur quasi-statically.
It is remarkable how this simple technique solves the problem of mesh-size

dependence satisfactorily. To show this, consider the 1D problem of a straight
bar under tensile straining, with a small defect located at a given position
inside the bar. Obviously, the only reasonable solution is a crack initiating
and progressively opening at the location of the defect. If the problem is
solved with small enough time increments so to ensure that only the finite
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element containing the defect opens at the proper time step, and the element
size is adequately taken into account to regularize the local softening, the
global response of the bar, in terms of load vs. end displacement is unique
and perfectly objective upon mesh refinement.

4 Boundary value problem
The possibilities to model tensile cracks with finite elements within the con-
tinuum mechanics framework are several, and both the weak and the strong
discontinuity approaches have been followed. In the first one, the objective is
to capture the crack as a discontinuity in the strain field, using standard con-
tinuous elements; the smeared crack approach is included in this category.
In the second one, the displacement field of the element is enhanced with
discontinuous functions so that the actual jump in the displacement field
can be captured. In fact, both approaches are compatible. On one hand, a
weak discontinuity can be interpreted as the regularization of a strong one
over a given width, for instance with the discontinuity “smeared” across the
maximum possible resolution of the mesh, that is, one element; on the other
hand, a strong discontinuity is the limit case of a weak one with vanishing

Figure 3: Strain localization: (a) weak (strain) discontinuity; (b) strong
(displacement) discontinuity
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width. Figure 3a sketches both approaches to strain localization.

4.1 Weak and strong discontinuity approaches

4.1.1 Weak (strain) discontinuity approach

The strong form of the continuum mechanical problem can be stated as: find
the displacement field u, for given prescribed body forces f , such that:

∇ · σ+ f = 0 in Ω (11)

where Ω is the open and bounded domain of Rndim occupied by the solid in
a space of ndim dimensions. Eq. (11) is subjected to appropriate Diritchlet
and Neumann boundary conditions. In the following, we will assume these in
the form of prescribed displacements u = u on ∂Ωu, and prescribed tractions
t on ∂Ωt, respectively.
Multiplying by the test functions and integrating by parts, the associated

weak form of the problem can be stated in the standard form as:

(∇sv,σ)− (v, f)− v,t
∂Ωt

= 0 ∀v in Ω (12)

where v ∈ V are the variations of the displacement field, V is the space of
functions in H1 (Ω) , that is, functions square integrable in Ω with square
integrable derivatives, that vanish on ∂Ωu; (·, ·) denotes the inner product in
L2 (Ω).
The corresponding discrete problem is

(∇svh,σh)− (vh, f)− vh,t ∂Ωt
= 0 ∀vh in Ω (13)

where vh and σh represent the discrete counterparts of the fields v and σ. In
the weak (strain) discontinuity approach, the discrete displacement space uh
consists of polynomial functions inside the elements and interelement continu-
ity is enforced by nodal compatibility; therefore, uh is piece-wise continuous.
The discrete stress field σh is a continuous function (through the constitutive
equation) of the discrete strain field, εh=∇suh, which consists of polynomial
functions (of one degree less than the displacements) inside the elements,
but is discontinuous at the interfaces between elements. Therefore, strain
localization can be optimally reproduced by highly localized displacement
gradients (strains) across one single element.
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Solving Eq. (13) is a nonlinear problem because of the dependence of the
stresses σh on the displacements uh. In practice, this nonlinearity is dealt
with assuming that the acting body forces and boundary tractions, f and t,
are applied incrementally, being dependent on (pseudo)time or other loading
parameter. Then, the problem is solved advancing step-by-step in time (or
load), and iterating within each step until equilibrium is satisfied.

4.1.2 Strong (displacement) discontinuity approach

In the strong discontinuity approach ([11], [12], [13], [14], [15]) it is assumed
that it exists a material discontinuity S ⊂ Ω of zero measure and that dis-
continuities in the displacement field may occur across S (see Fig. 4). This
is the case of a line crack in 2D or a surface crack in 3D.
Note that in the following, the position and extension of the discontinuity

S is assumed to be known. The formulation merely states the problem for
a given configuration; it is emphasized that, by itself, it does not include
any criterion to establish the stability of the crack or to govern its possible
extension with time under increasing loading. This has to be derived from
different considerations, like bifurcation analysis [13].
The strong form of the continuum mechanical problem can be stated as:

find the (discontinuous) displacement field u, for given prescribed body forces
f , such that:

∇ · σ+ f = 0 in Ω\S (14a)

tΩ\S = tS in S (14b)

Figure 4: Strong discontinuity approach
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where Ω\S is the part of Ω outside the discontinuity S and t is the trac-
tion vector. Eq. (14a) is subjected to appropriate Diritchlet and Neumann
boundary conditions. Note that Eq. (14a) represents internal equilibrium in
each one of the two parts, Ω− and Ω+, in which S divides Ω; on the other
hand, Eq. (14b) represents continuity of tractions across the discontinuity S.
It can be observed that these are the same equilibrium equations that govern
contact between two bodies; kinematic restrictions are also very similar.
Multiplying by the corresponding test functions and integrating by parts

the first equation, the associated weak form of the problem can be stated in
the form:

(∇sv,σ)− (v, f)− v,t
∂Ωt

= 0 ∀v in Ω\S (15a)

v, tΩ\S − v, tS = 0 ∀ṽ in S (15b)

where v ∈ V are the variations of the continuous part of the displacement
field, and v ∈ V are the variations of the discontinuous part of the displace-
ment field, V= L2 (S). Note that the displacement field u in Ω can now be
discontinuous across S and it can be split as u = ū+u, where ū is continuous
in Ω and u (some components of it) is discontinuous across S. Eq. (15b) is
necessary to determine u.
The corresponding discrete problem is

(∇svh,σh)− (vh, f)− vh,t ∂Ωt
= 0 ∀vh in Ω\S (16a)

vh, t
Ω\S
h − vh, t

S
h = 0 ∀ṽh in S (16b)

where vh,vh and σh, th represent the discrete counterparts of the fields
v,v and σ, t. In the strong discontinuity approach, several possibilities ap-
pear when defining the spatial discretization of the displacement field. One
of them is to use finite elements with embedded discontinuities. Here, the
elements crossed by the discontinuity, and only them, are enriched with addi-
tional degrees of freedom to parametrize the discontinuous part u. Precisely,
Eq. (16b) is necessary to determine these additional dofs. Therefore, the
discrete displacement space uh is piece-wise continuous in Ω\S, but discon-
tinuous across S. The discrete strain field εh consists of polynomial functions
(of one degree less than the displacements) inside the elements and discontin-
uous at the interfaces between elements in Ω\S, but grows to infinity across
S. Figure 3b shows this situation.
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Solving Eqs. (16a)-(16b) is obviously a nonlinear problem. As in the
weak discontinuity approach, this nonlinearity is dealt with advancing step-
by-step in time (or load), and iterating within each step until the required
equations are satisfied.

4.2 Stability of the weak and strong discontinuity ap-
proaches

The governing Eqs. (11) and (14a), stated in terms of the total displacement
u (not the rate equations, written in terms of the incremental displace-
ments), can be rewritten in terms of the deviatoric and volumetric parts of
the deformation as

∇ · (G∇su) +∇ (K ∇ · u ) + f = 0 in Ω (17)

where G and K are the shear and bulk moduli, respectively.
A standard stability (or energy) estimate for problem (17) is obtained by

multiplying the first two terms of the left hand side by u and integrating by
parts over the domain Ω, to yield

(∇su,G∇su) + (∇ · u,K ∇ · u) = nun2E > 0 (18)

where n·n2E is the energy norm (equal to the elastic free energy). Therefore,
the governing equations for the weak and strong discontinuity approaches are
stable, for strictly positive elastic moduli, G,K > 0. This means that the
solution u can be bounded, in this case in the energy norm, in terms of the
data.
For an isotropic damage model, the stability estimate reads

(∇su,Gsec∇su) + (∇ · u,Ksec ∇ · u) > 0 (19)

where stability of the problem can be guaranteed as long as the secant moduli,
Gsec = (1 − d)G and K sec = (1 − d)K, remain strictly positive, that is,
for damage index d < 1. Eq. (19) still holds if the secant moduli vanish
completely (d = 0) only in a subdomain S ⊂ Ω of zero measure. Conversely,
the problem becomes unstable if there are subdomains of non-zero measure
in Ω which lose the stiffness completely.
Regarding the discrete problem, the same restrictions apply for the gov-

erning equation to be stable,

(∇suh,Gsec∇suh) + (∇ · uh,Ksec ∇ · uh) > 0 (20)
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where uh represents the discrete displacement field. It would seem that sta-
bility can only be maintained if uh is discontinuous (strong discontinuity),
ensuring that the secant moduli vanish completely only in a subdomain of
zero measure in Ω. However, and having standard finite element discretiza-
tions in mind, we can admit that the problem remains stable if the secant
moduli vanish only in a properly restricted subdomain in Ω, such as in a
band of elements (one element across) overlapping the crack. This opens the
possibility of solving crack propagation problems using standard elements
with continuous displacement fields uh (weak discontinuity), if the extension
of the totally damaged areas is restricted to a band one element across.

5 The problem of crack propagation

5.1 Local approximation error

In fracture mechanics, the two basic ingredients of the physical model are: (a)
the criterion for crack propagation (instability), which is usually established
in terms of the stored elastic energy, and (b) the criterion for selecting the
direction of crack propagation, which is established empirically among several
possibilities [32]. Once these two ingredients are established, the problem of
crack propagation is invariably tackled in a staggered, two stage, procedure:
for a given crack configuration, (i) solve the mechanical problem in order
to compute the stress field and, consequently, to determine if the crack is
unstable and (ii) if so, update the crack path, by advancing the crack tip
a small distance, according to the selected criterion for crack propagation.
Necessarily, crack tracking algorithms are always an essential part of fracture
mechanics based codes, and are also crucial in the application of the X-FEM.
In a continuum mechanics framework, the same procedure can be hypo-

thetically followed, now involving: for a given damage distribution, (i) solve
the mechanical problem in order to compute the stress field Eq. (13) and,
consequently, (ii) update the damage distribution. This second stage involves
two different operations: (ii.a) to update the damage index in those elements
previously damaged and (ii.b) to decide which elements are newly damaged.
Observe now the implications of proceeding in this way. Stage (i) consists

of solving a linear elastic BVP, with a given distribution of (positive) elastic
moduli. The problem is obviously linear, well posed, elliptic, stable and the
solution is unique. Note also that while solving this problem it is never
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necessary to evaluate any negative tangent elastic modulus. Stage (ii.a) is
trivial, as damage is an explicit function of the strain history. Stage (ii.b),
deciding which elements are newly damaged, requires some more deliberation.
In the classical smeared crack approach it has always been implicitly un-

derstood that the criterion for the onset of cracking, which is always estab-
lished in terms of stresses/strains, also must automatically define the direc-
tion of propagation. This is a natural assumption in the continuum problem,
with proper evaluation of stress and strain values and directions. However,
in the discrete problem the stress and strain fields evaluated in the vicinity
of the crack tip differ greatly from being exact. As a consequence, the auto-
matic application of the cracking criterion for the evaluation of the direction
of crack growth leads to an unacceptable dependence on the mesh bias in
this region.
This local approximation error due to the spatial discretization in the

vicinity of the crack tip is the main difficulty to be overcome when solving
the problem of tensile crack propagation. In fracture mechanics, this was
traditionally solved by the use of special finite elements in the discretization
of this region (see reference [7]). More recently, the X-FEM applied to LEFM
problems proves effectively that mesh bias is eliminated if the functional space
of the discrete displacement field is enriched with functions that contain the
analytical solution in the vicinity of the crack tip ([8], [9], [10]).
The same situation arises in continuum mechanics: remarkably, and al-

though it is not always explicitly stated, all successful applications of the
strong discontinuity approach use tracking algorithms to lead the direction
of crack propagation. In fact, Mosler and Meschke [18] have proved that if
tracking is not used, the strong discontinuity formulation leads to the same
spurious mesh bias dependence as the standard weak discontinuity approach.
On the other hand, Grassl and Jirásek [33] have reported that tracking tech-
niques substantially improve the results obtained with local damage models.
All this evidence points to the conclusion that solving in an adequate

manner the problem of crack propagation is essential also in a continuum
framework of the crack growth problem, both if continuous or discontinuous
displacement fields are used in the interpolation basis.

5.2 Evaluation of the propagation direction

In this work we will explicitly consider the evaluation of the propagation
direction as a separate problem, obviously coupled to that of solving the
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equilibrium equation (13). This evaluation must be consistently linked to the
cracking criterion, as this is the established cracking mechanism at continuum
level, and it cannot be locally dependent on the discrete stress/strain fields,
as these may be substantially off-track.
For a Rankine damage criterion, let us assume that the crack propagates

following a surface (a line in 2D) which is orthogonal to the direction of the
maximum positive principal stress. Then, to be able to predict the direction
of propagation of the crack it is necessary to evaluate the principal stress
trajectories in the vicinity of the crack tip. Therefore, what is needed is a
procedure capable of accurately computing these trajectories in the region
of interest. The following procedure was proposed in reference [14] in the
strong discontinuity framework, and it has been already applied in 2D and
3D applications [16].
Let n be a field of unit vectors in the direction of the maximum posi-

tive principal stress at each point of the domain, and s and t be any two
orthogonal unit vectors orthogonal to it. Let θ be a scalar field such that
its gradient is parallel to the given vector field n, so that n =∇θ/ n∇θn. It
is clear that the iso-level surfaces (lines in 2D) defined by θ = cte are or-
thogonal to n. Therefore, the crack propagates along one particular iso-level
surface S defined by θ = θ̄o. Thus, the problem of evaluating the direction of
crack propagation is equivalent to finding the scalar field θ and determining
the iso-level locus θ = θ̄o.
This is conveniently formulated as the following linear BVP: find the

scalar field θ, such that:

∇ · (K ·∇θ) = 0 in Ω (21)

where Ω is the open and bounded domain of Rndim occupied by the solid in
a space of ndim dimensions.
Eq. (21) is subjected to appropriate boundary conditions. Let xo be

the point of the boundary where the crack is initiated and S̄ ⊂ S be the
part of the surface S where the cracking criterion has already been violated
(consolidated part of the crack). Dirichlet boundary conditions are specified
in (a) a part of the boundary ∂Ωθ ⊂ ∂Ω including the seminal point xo ∈ ∂Ωθ,
and so that θ (xo) = θ̄o and (b) along S̄, so that θ (x) = θ̄o for points x ∈ S̄;
natural boundary conditions are imposed elsewhere at ∂Ω (see Fig. 5).
The second-order tensor K couples the scalar problem (21) to the evolu-
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(a) (b)

Figure 5: Tracking algorithm: (a) definition, (b) iso-level curves

tion of the mechanical problem, Eq. (11). It takes the form

K = t⊗ t+ s⊗ s+εn⊗ n (22)

where ε is a small perturbation value, ε = 10−4 ÷ 10−10. This enforces that
n =∇θ/ n∇θn .
Note that, in these conditions, the size of ∂Ωθ, the part of the boundary

where θ is prescribed and the actual values of θ used in the prescription need
not be uniquely defined, as the trajectory of the iso-line starting at xo will
not be effectively affected by these parameters. Typically, let us take ∂Ωθ,
see Fig. 5, as the inside boundary of the notch we want to investigate, and let
θ vary linearly along it with an arbitrary gradient but satisfying θ (xo) = θ̄o.
The associated weak form of the problem can be stated as:

(K ·∇θ,∇η) = 0 ∀η (23)

where η ∈ Q = H1 (Ω) are the variations of the scalar field, and (·, ·) denotes
the inner product in L2 (Ω). The corresponding discrete problem is

(K ·∇θh,∇ηh) = 0 ∀ηh (24)

where θh and ηh are the discrete counterparts of θ and η. In the discrete
problem, when the smeared crack approach is adopted, the elements crossed
by the iso-surface (or line) θ = θ̄o are assumed to belong to the locus S.
Therefore, the corresponding boundary condition is imposed at the nodes
pertaining to those elements.
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Problem (24) is very simple, as it is linear, elliptic and it only involves one
unknown per node. Besides, being a conduction-like problem, it is sufficiently
well-behaved and it does not present any singular point in the vicinity of the
advancing crack. It can be solved using the same FE mesh as problem (13)
and the coupling with it can be enforced once per time increment or, more
rigorously, at each iteration. Once it is solved, and the elements e lying along
the iso-level locus S, such that θ = θ̄o, are identified, these are subsequently
known to the mechanical solver when performing the check on the crack
criterion; only those elements crossed by S are allowed to crack, and those
actually cracked are added to the consolidated part of the track S̄ ⊂ S.
The described algorithm can be easily extended to track the propagation

of multiple cracks, simply by defining the i− th crack as the locus Si where
θ = θ̄

i
o and specifying the corresponding boundary conditions at S̄

i ⊂ Si.
The case of intersecting cracks, however, cannot be as easily accommodated
in this procedure.

6 Numerical examples
The formulation presented in the preceding sections is illustrated below by
solving three benchmark problems. Performance of the standard continu-
ous displacement (weak discontinuities) finite elements is tested considering
standard 2D plane-stress 3-noded linear triangular meshes.
The examples are solved using the isotropic damage model presented

in Section 3 with exponential strain softening, regularized according to the
element size, and the global tracking algorithm presented in Section 5.
The discrete weak form of the mechanical problem is solved incrementally,

in a (pseudo)time step-by-step manner. In all cases 200 equal time steps are
performed to complete the analyses. Within each step, a modified Newton-
Raphson method (using the secant stiffness matrix), together with a line
search procedure, is used to solve the corresponding non-linear system of
equations. Convergence of a time step is attained when the ratio between
the iterative and the incremental norm of the computed displacements is
lower than 10−3 (0.1 %).
Calculations are performed with an enhanced version of the finite element

program COMET [34], developed by the authors at the International Center
for Numerical Methods in Engineering (CIMNE). Pre and post-processing is
done with GiD, also developed at CIMNE [35].
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6.1 Double edge notched specimen (DENS)

This example is selected because it corresponds to a series of tests fully
documented in Nooru-Mohamed’s Doctoral Thesis [36] and it has been nu-
merically simulated in many occasions using different crack approaches ([14],
[17], [37], [38]).
The specimen is square shaped and double edge notched (DENS), with

dimensions 200 × 200 × 50 mm3, and notch depths of 25 mm and widths of
5 mm. A schematic diagram of the geometry of the specimen and the testing
arrangement is shown in Figure 6.
The experiments were designed to subject the specimen to mixed-mode

tensile cracking. The DENS was placed in a special rigid loading frame to
allow for the analysis of various loading paths combining shear and tension
under force and/or displacement control. The specimen to be studied here
was supported at the bottom and along the right-hand side below the notch.
The shear force Ps was applied through the frame along the left-hand side of
the specimen above the notch and the normal force P was applied at the top.
The frames were glued to the specimen. The relative normal deformation in
the fracture zone δ was measured between the points marked in the sketch,

Figure 6: Geometry and load for double edge notched specimen (DENS)

20



(a) (b) (c)

Figure 7: Experimentally obtained crack patterns for double edge notched
specimen s

65 mm apart and 30 mm from the left-hand side boundary.
Three different load-paths are investigated here, 4a 48-03, 4b 46-05 and

4c 47-06. They are characterized by different values of the firstly applied
shear force Ps (while P = 0): 5 kN for DENS-4a, 10 kN for DENS-4b and
Pmaxs =27.5 kN for DENS-4c. The experiment continues by keeping the ap-
plied shear force Ps constant, while progressively increasing the axial vertical
displacement. The corresponding normal reaction P is measured throughout
the experiment.
Figure 7 shows the crack patterns obtained in the experiments. It should

be observed that, although very interesting, these experimental results can-
not be accepted unquestionably. First, the difference in cracking between the
front and the rear faces indicates that the specimens were not really tested
under pure membrane action, some bending may have spuriously happened.
Furthermore, the cracks at the top and bottom of the specimens do not show
the symmetry that would be expected from the intended boundary condi-
tions. This may be due to a number of reason dealing with the set up of
the fixings. Anyhow, they are affecting the strain/stress field in at least one
half of the specimens significantly. Other comment is that it was reported
that the frame and the specimens, although being glued, suffered separation
in some cases, particularly at the top-right and bottom-left corners, where
some spurious cracking was observed in some specimens. Also, it is worth
to mention that all the numerical simulations referred to these tests tend to
evaluate peak values for the normal forces P which are overestimated when
compared to the experimental values. This may be due to the mentioned de-

21



ficiencies in the experimental set up. Finally, the specimens were of different
ages in the moment of their testing. All this means that the confidence on
the experimental results must be critically evaluated.
The computational domain is discretized in two different unstructured

meshes of 2D plane-stress 3-noded linear triangular elements with average
mesh sizes of he = 5 mm (2,125 nodes) and he = 2.5 mm (8,391 nodes).
Although this may seem a very refined degree of discretization, it must be
observed that the difference in the global elastic stiffness under the shear
forces is 7 % between the “coarse” and “fine” meshes, the latter being ob-
viously smaller. This is because of the presence of the two notches, which
render the nearby areas nearly singular. Regarding the computational bound-
ary conditions, they have been defined exactly symmetrical, with the central
node of the mesh being fixed in the horizontal and vertical dofs.
For each of the load-paths, four different analyses have been performed:

(a.1) coarse mesh with tracking, (a.2) coarse mesh without tracking, (b.1) fine
mesh with tracking and (b.2) fine mesh without tracking. The pre-processor
used tends to introduce patches of equilateral triangles with predominant
directions at −60o, 0o and +60o with the horizontal axis, particularly for the
finer mesh. The results obtained are discussed in the following.

6.2 Load path 4a

For load-path 4a (specimen 48-03) the loading is applied in two stages: first, a
shear force Ps = 5 kN is applied, while keeping the normal force P = 0; later,
the experiment continues by keeping the applied shear force Ps constant,
while progressively increasing the axial vertical displacement ∆.
The following material properties are assumed for this case: Young’s

modulus E = 30 GPa, Poisson’s ratio ν = 0.2, tensile strength σo = 2.8 MPa
and mode I fracture energy Gf = 90 J/m2.
As commented, four separate analyses are performed using th two meshes.

The computed deformed shapes of the specimen are shown in Figures 8a and
8b, for the coarse and fine meshes, respectively (imposed total vertical dis-
placement ∆ = 0.2 mm, with a displacement amplification factor of 100).
The different element sizes in the meshes can be appreciated in these figures.
As shown, the computed cracks in the two analyses where tracking was per-
formed (top figures) follow very closely the same path, starting at the tip of
the notches and tilting slightly due to the orientation of the strain field. No
spurious mesh bias is observed in any of these analyses.
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(a.1) with tracking (b.1) with tracking

(a.2) without tracking (b.2) without tracking

Figure 8: Deformed geometries (x 100) on the two meshes with and without
tracking for double edge notched specimen - load path 4a

If no tracking strategy is used, see Figures 8a.2 and 8b.2, the cracks
initiate correctly, but they turn horizontally almost immediately to run along
with the respective mesh alignment and too close to the horizontal axis.
Figure 9 shows load vs imposed vertical displacement curves obtained

with the two different meshes, and using tracking. In this example the load-
ing branch curves slowly as the cracks progress, turning into the softening
branch once the failure mechanism is fully developed. Load does not vanish
completely because only damage due to tensile effective stresses is considered,
and the state of stresses near the opposite notch is mostly compressive.
Note that the overall global response is very similar upon mesh refinement,

although the effect of the different spatial discretizations can be observed
even in the global elastic stiffness of the specimen. This shows that solving
problems involving singular stress points requires a high level of resolution.
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Figure 9: Load versus displacement for double edge notched specimen - load
path 4a. Comparison between different mesh sizes

No spurious brittleness is observed when the size of the elements in the mesh
is reduced.
Figure 10 shows the results obtained using the proposed formulation on

the fine mesh. The three columns represent, respectively, the evolution, at
three different time steps of the analysis, of: (a) the contours of total dis-
placements, (b) the contours of the damage index and (c) the maximum
principal strain vectors. The progressive concentration of the displacement
gradients (strains) in the elements along the crack paths is evident in the
three columns. The bottom figures show how, when the failure mechanism is
fully developed, all the deformation concentrates in the formed cracks, while
the elements outside these bands are mostly undeformed. Note that the reso-
lution of the cracks is optimal for the mesh used. Observe in the left bottom
plot how, once both cracks are formed, the central part of the specimen ro-
tates almost as a rigid body around the center of the specimen. For the
coarser mesh, similar results are obtained, although the strain localization is
smeared across a row of larger elements (see Fig. 8).
In the third column, it can be observed that, although this experiment has
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Figure 10: Results for double edge notched specimen (load path 4a). Evolu-
tion of: (a) displacement, (b) damage, (c) vectors of max. principal strain

been devised as a mixed-mode cracking test, and the cracks indeed initiate at
an angle from the notches, the failure mechanism is mainly in pure mode I, as
the computed maximum tensile principal strain vectors (as the related vectors
of maximum tensile principal effective stress) are mostly orthogonal to the
crack path. Note also that the correct failure mechanism has been predicted
although the directions of some of the computed maximum principal strain
vectors are clearly dependent on the mesh bias, as they are not orthogonal
to the crack path everywhere.
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(a)

(b)

Figure 11: Evolution of the profiles along the central vertical axis of: (a) ver-
tical displacement and (b) maximum principal strain for double edge notched
specimen (load path 4a)

Finally, Figures 11a and 11b show the evolution, at three different time
steps of the analysis, of: (a) the vertical displacement and (b) the maximum
principal strain, along a vertical line along the centre of the specimen which
crosses both cracks. In these, it can be observed how the initially smooth
gradient of displacements progressively localizes into two very sharp (but
weak) jumps across one single element. Also, the strain profile progressively
localizes with very sharp resolution of the two (weak) discontinuities formed.
It is therefore shown that, in practice, there exists little difference between a

26



highly resolved weak discontinuity and a strong discontinuity.

6.3 Load path 4b

For load-path 4b (specimen 46-05) the loading is also applied in two stages:
first, a shear force Ps = 10 kN is applied, while keeping the normal force
P = 0; later, the experiment continues by keeping the applied shear force Ps
constant, while progressively increasing the axial vertical displacement ∆.
The following material properties are assumed for this case: Young’s

modulus E = 30 GPa, Poisson’s ratio ν = 0.2, tensile strength σo = 2.2 MPa
and mode I fracture energy Gf = 80 J/m2.
Again, four separate analyses are performed using the two different meshes.

The computed deformed shapes of the specimen are shown in Figures 12a

(a.1) with tracking (b.1) with tracking

(a.2) without tracking (b.2) without tracking

Figure 12: Deformed geometries (x 100) on the two meshes with and without
tracking for double edge notched specimen (load path 4b)
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and 12b, for the coarse and fine meshes, respectively (imposed total vertical
displacement ∆ = 0.2 mm, with a displacement amplification factor of 100).
As shown, the computed cracks in the two analyses where tracking was per-
formed (top figures) follow very closely the same path, and no spurious mesh
bias is observed in any of these analyses. The elevation that the top crack
reaches above the horizontal axis matches almost exactly that observed in
the experiment (see Fig. 7b).
If no tracking strategy is used, see Figures 12a.2 and 12b.2, the cracks are

practically horizontal, running along with the mesh alignment and practically
coinciding with the horizontal axis. The analysis on the fine mesh fails along
this axis at a much earlier stage than expected.
Figure 13 shows load vs imposed vertical displacement curves obtained

with the two different meshes, and using tracking. In this example the loading
branch curves more slowly as the cracks progress, turning into the softening
branch once the failure mechanism is fully developed. Load almost vanishes
completely at the end of the analyses. As in the previous example, the
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Figure 13: Load versus displacement for double edge notched specimen - load
path 4b. Comparison between different mesh sizes
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Figure 14: Evolution of damage index for double edge notched specimen
(load path 4b)

overall global response is very similar upon mesh refinement, and no spurious
brittleness is observed when the size of the elements in the mesh is reduced.
Figure 14 shows the evolution of the damage obtained using the proposed

formulation on the fine mesh.

6.4 Load path 4c

For load-path 4c (specimen 47-06) the loading is also in two stages: first,
the maximum shear force that the specimen can sustain, Pmaxs = 27.5 kN,
is applied, while keeping the normal force P = 0; later, the experiment con-
tinues by keeping the applied shear force Pmaxs constant, while progressively
increasing the axial vertical displacement ∆.
The following material properties are assumed for this case: Young’s

modulus E = 30 GPa, Poisson’s ratio ν = 0.2, tensile strength σo = 2.2 MPa
and mode I fracture energy Gf = 80 J/m2.
As commented, four separate analyses are performed using the coarse

and fine meshes. In the FE analyses, the maximum shear force sustained by
the coarse mesh was Pmaxs = 27.5 kN, but the fine mesh sustained a slightly
higher shear force of Pmaxs = 28.6 kN (6 % higher) to reach the same state of
crack propagation. This is due to the 7 % difference in the global stiffness of
the two meshes. This explains the differences observed in the corresponding
responses during the later stage of axial straining.
The computed deformed shapes of the specimen are shown in Figures

15a and 15b, for the coarse and fine meshes, respectively (imposed total
vertical displacement ∆ = 0.2 mm, with a displacement amplification factor
of 100). As shown, the computed cracks in the two analyses where tracking
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(a.1) with tracking (b.1) with tracking

(a.2) without tracking (b.2) without tracking

Figure 15: Deformed geometries (x 100) on the two meshes with and without
tracking for double edge notched specimen (load path 4c)

was performed (top figures) follow very closely the same path, starting at the
tip of the notches and progressively curving inwards due to the reorientation
of the strain field. Agreement with the experimental pattern (see Fig. 7c) is
remarkable. No spurious mesh bias is observed in any of these analyses.
If no tracking strategy is used, see Figures 15a.2 and 15b.2, the cracks

form almost horizontally, in a totally unrealistic manner. As in the previous
example, the analysis performed with the fine mesh fails prematurely.
Figure 16 shows load vs imposed vertical displacement curves obtained

with the two different meshes, and using tracking. This graph is surprising,
as it shows that the axial force P turns rapidly to be negative, even if the
applied axial displacement is positive, corresponding to pulling apart the
fixing frames. Only reference [38] reports success in modelling this curious
result, while reference [37] clearly states that the model used there cannot
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Figure 16: Load versus displacement for double edge notched specimen - load
path 4c. Comparison between different mesh sizes

reproduce this compressive state. Note that the value of the normal forces P
involved in this case is much lower than the shear forces Pmaxs . This explains
the relative difference in the results obtained with the two meshes.
Finally, Figure 17 shows the evolution of the damage index obtained using

the proposed formulation on the fine mesh.

Figure 17: Evolution of the damage index for double edge notched specimen
(load path 4c)
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7 Conclusions
This paper shows the application of standard finite elements with continu-
ous displacement fields, such as linear triangles, to the solution of problems
involving the propagation of tensile cracks using the classical smeared crack
approach, in this case, via a local isotropic continuum damage model with
strain softening regularized using the classical fracture energy regularization
technique.
The main novelty of the paper is to consider the determination of the

direction of propagation of the strain localization band as a separate problem,
coupled to that of solving the equation of equilibrium. The necessity of doing
this stems from previous experience with the discrete crack approach, both
in the fracture and continuum mechanics frameworks, but also from the
stability analysis of the weak forms of the associated mechanical problem,
both in continuum and discrete formats.
A mesh objective formulation of the problem is obtained, which translates

in the achievement of two goals: (1) the position and orientation of the
localization paths (cracks) are independent of the directional bias of the
finite element mesh, and (2) the global post-peak load-deflection curves are
independent of the size of the elements in the localization path (crack).
Numerical examples show, on one hand, the advantage of using a crack

propagation algorithm to predict correct failure mechanisms with localized
patterns of tensile deformation, virtually free from any dependence of the
mesh directional bias; on the other, these techniques are shown to produce
results which exhibit the correct amount of dissipated energy during the
localization (fracture) process, directly related to the fracture energy of the
material, yielding a correct global response in the softening regime. Finally,
computed solutions show that, as expected, the weak discontinuity concept
converges upon mesh refinement to the strong discontinuity approach.
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