366 research outputs found

    Collisional damping of the fast magnetosonic wave in the tokamak edge plasma

    Get PDF

    Can Blockchain Really Remove All Intermediaries? A Multiple-Case Study in Different Industries

    Get PDF
    Blockchain is a disruptive and innovative technology. How will the blockchain technology disrupt different fields? Blockchain technology has disrupted the existing processes and will improve the efficiency of many operations. With improved efficiency, will blockchain remove all intermediaries in the chains? Further, will all positions of the intermediaries agree to be replaced by blockchain? Many intermediaries have demonstrated their liberal attitudes toward embracing blockchain technology. What are the intended purposes behind the ambition of the intermediaries? The research is still in progress and will adopt a multiple-case study and summarize the research intentions into a cross analysis table. The table will briefly show the role of users and indicate whether intermediaries are necessary in the ecosystems or they transfer into new roles and create new business models after deploying the blockchain technology

    Leveraging Smart Technology for User Experience Personalization – A Comparative Case Study of Innovative Payment Systems

    Get PDF
    Background: This study seeks to understand how the attributes of smart technology (SMT) can be leveraged to enable personalized services and optimize unique user experiences to attract and retain customers. Based on Kang et al.’s (2020) study of SMT attributes and quality effects and Liang et al.’s (2006) study on personalized recommendation and user satisfaction, we constructed a SMT personalization model to analyze how the SMT attributes of smart functionality and smart content enable personalization in different ways and create unique customer experiences throughout the user journey. Method: Two representative payment systems were selected to depict how they integrated the strengths of personalized smart functionalities and contents to innovate their business models, optimize user experiences, and sustain business growth. Results: Based on the comparative analysis of the two payment cases, the functionality and content attributes of smart chips and omni-channel platforms were explored, and the tailored advisory and responsive support for customers both offline and online were validated. Conclusion: The life-enriching service innovations provide valuable insights for leveraging SMT for personalization. It is hoped that the SMT personalization model can be extended to other types of SMT applications and can be used as a framework for designing innovative services

    The signals of FGFs on the neurogenesis of embryonic stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neural induction is a complex process and the detailed mechanism of FGF-induced neurogenesis remains unclear.</p> <p>Methods</p> <p>By using a serum-free neural induction method, we showed that FGF1 dose-dependently promoted the induction of Sox1/N-cadherin/nestin triple positive cells, which represent primitive neuroblasts, from mouse embryonic stem (ES) cells.</p> <p>Results</p> <p>We demonstrated that FGF1, FGF2, and FGF4, but not FGF8b, enhanced this neurogenesis. Especially, FGF-enhanced neurogenesis is not mediated through the rescue of the apoptosis or the enhancement of the proliferation of Sox1<sup>+ </sup>cells. We further indicated that the inactivation of c-Jun N-terminal kinase-1 (JNK-1) and extracellular signal-related kinase-2 (ERK-2), but not p38 mitogen-activated protein kinase (MAPK), inhibited the neural formation through the inhibition of ES differentiation, but not through the formation of endomesodermal cells.</p> <p>Conclusions</p> <p>These lines of evidence delineated the roles of FGF downstream signals in the early neural differentiation of ES cells.</p

    Structural dynamics of a metal-organic framework induced by CO2 migration in its non-uniform porous structure

    Get PDF
    Stimuli-responsive behaviors of flexible metal-organic frameworks (MOFs) make these materials promising in a wide variety of applications such as gas separation, drug delivery, and molecular sensing. Considerable efforts have been made over the last decade to understand the structural changes of flexible MOFs in response to external stimuli. Uniform pore deformation has been used as the general description. However, recent advances in synthesizing MOFs with non-uniform porous structures, i.e. with multiple types of pores which vary in size, shape, and environment, challenge the adequacy of this description. Here, we demonstrate that the CO -adsorption-stimulated structural change of a flexible MOF, ZIF-7, is induced by CO migration in its non-uniform porous structure rather than by the proactive opening of one type of its guest-hosting pores. Structural dynamics induced by guest migration in non-uniform porous structures is rare among the enormous number of MOFs discovered and detailed characterization is very limited in the literature. The concept presented in this work provides new insights into MOF flexibility

    Event Reconstruction in the PHENIX Central Arm Spectrometers

    Full text link
    The central arm spectrometers for the PHENIX experiment at the Relativistic Heavy Ion Collider have been designed for the optimization of particle identification in relativistic heavy ion collisions. The spectrometers present a challenging environment for event reconstruction due to a very high track multiplicity in a complicated, focusing, magnetic field. In order to meet this challenge, nine distinct detector types are integrated for charged particle tracking, momentum reconstruction, and particle identification. The techniques which have been developed for the task of event reconstruction are described.Comment: Accepted for publication in Nucl. Instrum. A. 34 pages, 23 figure

    Cell shape analysis of random tessellations based on Minkowski tensors

    Full text link
    To which degree are shape indices of individual cells of a tessellation characteristic for the stochastic process that generates them? Within the context of stochastic geometry and the physics of disordered materials, this corresponds to the question of relationships between different stochastic models. In the context of image analysis of synthetic and biological materials, this question is central to the problem of inferring information about formation processes from spatial measurements of resulting random structures. We address this question by a theory-based simulation study of shape indices derived from Minkowski tensors for a variety of tessellation models. We focus on the relationship between two indices: an isoperimetric ratio of the empirical averages of cell volume and area and the cell elongation quantified by eigenvalue ratios of interfacial Minkowski tensors. Simulation data for these quantities, as well as for distributions thereof and for correlations of cell shape and volume, are presented for Voronoi mosaics of the Poisson point process, determinantal and permanental point processes, and Gibbs hard-core and random sequential absorption processes as well as for Laguerre tessellations of polydisperse spheres and STIT- and Poisson hyperplane tessellations. These data are complemented by mechanically stable crystalline sphere and disordered ellipsoid packings and area-minimising foam models. We find that shape indices of individual cells are not sufficient to unambiguously identify the generating process even amongst this limited set of processes. However, we identify significant differences of the shape indices between many of these tessellation models. Given a realization of a tessellation, these shape indices can narrow the choice of possible generating processes, providing a powerful tool which can be further strengthened by density-resolved volume-shape correlations.Comment: Chapter of the forthcoming book "Tensor Valuations and their Applications in Stochastic Geometry and Imaging" in Lecture Notes in Mathematics edited by Markus Kiderlen and Eva B. Vedel Jense

    Heavy Quarks and Heavy Quarkonia as Tests of Thermalization

    Full text link
    We present here a brief summary of new results on heavy quarks and heavy quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma Thermalization" Workshop in Vienna, Austria in August 2005, directly following the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop (Vienna August 2005) Proceeding

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Get PDF
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure
    corecore