21 research outputs found

    DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer

    Get PDF
    Oomycete species occupy many different environments and many ecological niches. The genera Phytophthora and Pythium for example, contain many plant pathogens which cause enormous damage to a wide range of plant species. Proper identification to the species level is a critical first step in any investigation of oomycetes, whether it is research driven or compelled by the need for rapid and accurate diagnostics during a pathogen outbreak. The use of DNA for oomycete species identification is well established, but DNA barcoding with cytochrome c oxidase subunit I (COI) is a relatively new approach that has yet to be assessed over a significant sample of oomycete genera. In this study we have sequenced COI, from 1205 isolates representing 23 genera. A comparison to internal transcribed spacer (ITS) sequences from the same isolates showed that COI identification is a practical option; complementary because it uses the mitochondrial genome instead of nuclear DNA. In some cases COI was more discriminative than ITS at the species level. This is in contrast to the large ribosomal subunit, which showed poor species resolution when sequenced from a subset of the isolates used in this study. The results described in this paper indicate that COI sequencing and the dataset generated are a valuable addition to the currently available oomycete taxonomy resources, and that both COI, the default DNA barcode supported by GenBank, and ITS, the de facto barcode accepted by the oomycete and mycology community, are acceptable and complementary DNA barcodes to be used for identification of oomycetes

    Noninvasive Fetal Genotyping by Droplet Digital PCR to Identify Maternally Inherited Monogenic Diabetes Variants

    Get PDF
    Background: Babies of women with heterozygous pathogenic glucokinase (GCK) variants causing mild fasting hyperglycemia are at risk of macrosomia if they do not inherit the variant. Conversely, babies who inherit a pathogenic hepatocyte nuclear factor 4α (HNF4A) diabetes variant are at increased risk of high birth weight. Noninvasive fetal genotyping for maternal pathogenic variants would inform pregnancy management. Methods: Droplet digital PCR was used to quantify reference and variant alleles in cell-free DNA extracted from blood from 38 pregnant women heterozygous for a GCK or HNF4A variant and to determine fetal fraction by measurement of informative maternal and paternal variants. Droplet numbers positive for the reference/alternate allele together with the fetal fraction were used in a Bayesian analysis to derive probability for the fetal genotype. The babies' genotypes were ascertained postnatally by Sanger sequencing. Results: Droplet digital PCR assays for GCK or HNF4A variants were validated for testing in all 38 pregnancies. Fetal fraction of ≥2% was demonstrated in at least 1 cell-free DNA sample from 33 pregnancies. A threshold of ≥0.95 for calling homozygous reference genotypes and ≤0.05 for heterozygous fetal genotypes allowed correct genotype calls for all 33 pregnancies with no false-positive results. In 30 of 33 pregnancies, a result was obtained from a single blood sample. Conclusions: This assay can be used to identify pregnancies at risk of macrosomia due to maternal monogenic diabetes variants.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.A.T. Hattersley and M.H. Shepherd are supported by the NIHR Exeter Clinical Research Facility, which is a partnership between the University of Exeter Medical School College of Medicine and Health, and Royal Devon and Exeter NHS Foundation Trust

    Development of BMP7-producing human cells, using a third generation lentiviral gene delivery system

    No full text
    Bone morphogenetic protein 7 (BMP7), a member of the transforming growth factor \u3b2 (TGF-\u3b2) superfamily, plays important roles in the development of various tissues and organs in mouse and human. In particular, BMP7 is critical for the formation of the nervous system and it is considered to have therapeutic potential in brain injury and stroke. One approach to make BMP7 more suitable for therapeutic purposes is the development of efficient vectors that allow the consistent, reliable and cost-effective production of the BMP7 protein. In this study, we developed an efficient BMP7deliverysystem, using athirdgenerationlentiviral vector to produce functional BMP7 protein. The lentiviral transduction of several humancell types, including human embryonic kidney 293 (HEK293) cells, amniotic fluid cells, NTera2 neurons (NT2-N) and primary neuronal cultures resulted in BMP7 expression. The production of BMP7 protein was achieved for at least 4 weeks post-transduction, as determined by enzyme-linked immunosorbent assay (ELISA). SMAD phosphorylation and neuronal differentiation assays verified the bioactivity and functionality of the lentiviral-based BMP7 protein, respectively. In addition, the intracerebroventricular injection of the lentivirus resulted in exogenous BMP7 expression in both neurons and astrocytes in the mouse brain. Taken together, this genedeliverysystem provides a reliable source of functional BMP7 protein for future in vitro and in vivo studies.Peer reviewed: YesNRC publication: Ye
    corecore