110 research outputs found

    Coronatine Facilitates Pseudomonas syringae Infection of Arabidopsis Leaves at Night.

    Get PDF
    In many land plants, the stomatal pore opens during the day and closes during the night. Thus, periods of darkness could be effective in decreasing pathogen penetration into leaves through stomata, the primary sites for infection by many pathogens. Pseudomonas syringae pv. tomato (Pst) DC3000 produces coronatine (COR) and opens stomata, raising an intriguing question as to whether this is a virulence strategy to facilitate bacterial infection at night. In fact, we found that (a) biological concentration of COR is effective in opening dark-closed stomata of Arabidopsis thaliana leaves, (b) the COR defective mutant Pst DC3118 is less effective in infecting Arabidopsis in the dark than under light and this difference in infection is reduced with the wild type bacterium Pst DC3000, and (c) cma, a COR biosynthesis gene, is induced only when the bacterium is in contact with the leaf surface independent of the light conditions. These findings suggest that Pst DC3000 activates virulence factors at the pre-invasive phase of its life cycle to infect plants even when environmental conditions (such as darkness) favor stomatal immunity. This functional attribute of COR may provide epidemiological advantages for COR-producing bacteria on the leaf surface

    The use of Pd catalysts on carbon-based structured materials for the catalytic hydrogenation of bromates in different types of water

    Get PDF
    [EN] The aim of this work is to study the activity of new Pd catalysts, supported on two different nano structured carbon materials, for bromate catalytic hydrogenation. The influence of the support has been studied, obtaining the best results with a palladium catalyst supported on carbon nanofibers (CNF) grown in sintered metal fibers (SMF). The results have shown the importance of the catalyst support in order to minimize the mass-transfer limitations ensuring an efficient catalyst use. In this way the most active catalysts are those with a mesoporous structure containing high dispersed Pd nanoparticles. The activity of this catalyst for bromate reduction has been tested in different types of water, namely, distilled water, natural water and industrial wastewater. It has been shown that the catalyst activity depends on the water matrix and bromate reduction rate depends on the hydrogen partial pressure. The potential use of the catalyst has been studied in a continuous reactor. It has been observed that the catalyst is active without any important deactivation at least during 100 h of reaction, but is necessary to avoid salt precipitation and plugging problems.The authors thank the European Union (European Community's Seventh Framework Programme FP7/2007-2013 under grant agreement no. 226347 Project) for financial support. A.E. Palomares also acknowledges the support from the Spanish Government through the project MAT2012-38567-C02-01.Palomares Gimeno, AE.; Franch MartĂ­, C.; Yuranova, T.; Kiwi-Minsker, L.; Garcia Bordeje, JE.; Derrouiche, S. (2014). The use of Pd catalysts on carbon-based structured materials for the catalytic hydrogenation of bromates in different types of water. Applied Catalysis B: Environmental. 146:186-191. https://doi.org/10.1016/j.apcatb.2013.02.056S18619114

    Aminobisphosphonates reactivate the latent reservoir in people living with HIV-1

    Get PDF
    Antiretroviral therapy (ART) is not curative due to the existence of cellular reservoirs of latent HIV-1 that persist during therapy. Current research efforts to cure HIV-1 infection include “shock and kill” strategies to disrupt latency using small molecules or latency-reversing agents (LRAs) to induce expression of HIV-1 enabling cytotoxic immune cells to eliminate infected cells. The modest success of current LRAs urges the field to identify novel drugs with increased clinical efficacy. Aminobisphosphonates (N-BPs) that include pamidronate, zoledronate, or alendronate, are the first-line treatment of bone-related diseases including osteoporosis and bone malignancies. Here, we show the use of N-BPs as a novel class of LRA: we found in ex vivo assays using primary cells from ART-suppressed people living with HIV-1 that N-BPs induce HIV-1 from latency to levels that are comparable to the T cell activator phytohemagglutinin (PHA). RNA sequencing and mechanistic data suggested that reactivation may occur through activation of the activator protein 1 signaling pathway. Stored samples from a prior clinical trial aimed at analyzing the effect of alendronate on bone mineral density, provided further evidence of alendronate-mediated latency reversal and activation of immune effector cells. Decay of the reservoir measured by IPDA was however not detected. Our results demonstrate the novel use of N-BPs to reverse HIV-1 latency while inducing immune effector functions. This preliminary evidence merits further investigation in a controlled clinical setting possibly in combination with therapeutic vaccination

    Closing the Implementation Gap: Bringing Clean Air to the Region

    Get PDF
    This report identifies 25 clean air measures that can positively impact human health, crop yields, climate change and socio-economic development, as well as contribute to achieving the Sustainable Development Goals. Implementing these measures could help 1 billion people breathe cleaner air by 2030 and reduce global warming by a third of a degree Celsius by 2050

    Aminobisphosphonates reactivate the latent reservoir in people living with HIV-1

    Get PDF
    Antiretroviral therapy (ART) is not curative due to the existence of cellular reservoirs of latent HIV-1 that persist during therapy. Current research efforts to cure HIV-1 infection include “shock and kill” strategies to disrupt latency using small molecules or latency-reversing agents (LRAs) to induce expression of HIV-1 enabling cytotoxic immune cells to eliminate infected cells. The modest success of current LRAs urges the field to identify novel drugs with increased clinical efficacy. Aminobisphosphonates (N-BPs) that include pamidronate, zoledronate, or alendronate, are the first-line treatment of bone-related diseases including osteoporosis and bone malignancies. Here, we show the use of N-BPs as a novel class of LRA: we found in ex vivo assays using primary cells from ART-suppressed people living with HIV-1 that N-BPs induce HIV-1 from latency to levels that are comparable to the T cell activator phytohemagglutinin (PHA). RNA sequencing and mechanistic data suggested that reactivation may occur through activation of the activator protein 1 signaling pathway. Stored samples from a prior clinical trial aimed at analyzing the effect of alendronate on bone mineral density, provided further evidence of alendronate-mediated latency reversal and activation of immune effector cells. Decay of the reservoir measured by IPDA was however not detected. Our results demonstrate the novel use of N-BPs to reverse HIV-1 latency while inducing immune effector functions. This preliminary evidence merits further investigation in a controlled clinical setting possibly in combination with therapeutic vaccination
    • …
    corecore