21 research outputs found

    MiR-137 Targets Estrogen-Related Receptor Alpha and Impairs the Proliferative and Migratory Capacity of Breast Cancer Cells

    Get PDF
    ERRα is an orphan nuclear receptor emerging as a novel biomarker of breast cancer. Over-expression of ERRα in breast tumor is considered as a prognostic factor of poor clinical outcome. The mechanisms underlying the dysexpression of this nuclear receptor, however, are poorly understood. MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level and play important roles in tumor initiation and progression. In the present study, we have identified that the expression of ERRα is regulated by miR-137, a potential tumor suppressor microRNA. The bioinformatics search revealed two putative and highly conserved target-sites for miR-137 located within the ERRα 3′UTR at nt 480–486 and nt 596–602 respectively. Luciferase-reporter assay demonstrated that the two predicted target sites were authentically functional. They mediated the repression of reporter gene expression induced by miR-137 in an additive manner. Moreover, ectopic expression of miR-137 down-regulated ERRα expression at both protein level and mRNA level, and the miR-137 induced ERRα-knockdown contributed to the impaired proliferative and migratory capacity of breast cancer cells. Furthermore, transfection with miR-137mimics suppressed at least two downstream target genes of ERRα–CCNE1 and WNT11, which are important effectors of ERRα implicated in tumor proliferation and migration. Taken together, our results establish a role of miR-137 in negatively regulating ERRα expression and breast cancer cell proliferation and migration. They suggest that manipulating the expression level of ERRα by microRNAs has the potential to influence breast cancer progression

    Tisotumab Vedotin in Combination With Carboplatin, Pembrolizumab, or Bevacizumab in Recurrent or Metastatic Cervical Cancer: Results From the innovaTV 205/GOG-3024/ENGOT-cx8 Study.

    Get PDF
    PURPOSE: Tissue factor is highly expressed in cervical carcinoma and can be targeted by tisotumab vedotin (TV), an antibody-drug conjugate. This phase Ib/II study evaluated TV in combination with bevacizumab, pembrolizumab, or carboplatin for recurrent or metastatic cervical cancer (r/mCC). METHODS: This open-label, multicenter study (ClinicalTrials.gov identifier: NCT03786081) included dose-escalation arms that assessed dose-limiting toxicities (DLTs) and identified the recommended phase II dose (RP2D) of TV in combination with bevacizumab (arm A), pembrolizumab (arm B), or carboplatin (arm C). The dose-expansion arms evaluated TV antitumor activity and safety at RP2D in combination with carboplatin as first-line (1L) treatment (arm D) or with pembrolizumab as 1L (arm E) or second-/third-line (2L/3L) treatment (arm F). The primary end point of dose expansion was objective response rate (ORR). RESULTS: A total of 142 patients were enrolled. In dose escalation (n = 41), no DLTs were observed; the RP2D was TV 2 mg/kg plus bevacizumab 15 mg/kg on day 1 once every 3 weeks, pembrolizumab 200 mg on day 1 once every 3 weeks, or carboplatin AUC 5 on day 1 once every 3 weeks. In dose expansion (n = 101), the ORR was 54.5% (n/N, 18/33; 95% CI, 36.4 to 71.9) with 1L TV + carboplatin (arm D), 40.6% (n/N, 13/32; 95% CI, 23.7 to 59.4) with 1L TV + pembrolizumab (arm E), and 35.3% (12/34; 19.7 to 53.5) with 2L/3L TV + pembrolizumab (arm F). The median duration of response was 8.6 months, not reached, and 14.1 months, in arms D, E, and F, respectively. Grade ≥3 adverse events (≥15%) were anemia, diarrhea, nausea, and thrombocytopenia in arm D and anemia in arm F (none ≥15%, arm E). CONCLUSION: TV in combination with bevacizumab, carboplatin, or pembrolizumab demonstrated manageable safety and encouraging antitumor activity in treatment-naive and previously treated r/mCC

    RNAi screen for NRF2 inducers identifies targets that rescue primary lung epithelial cells from cigarette smoke induced radical stress

    Get PDF
    Chronic Obstructive Pulmonary Disease (COPD) is a highly prevalent condition characterized by inflammation and progressive obstruction of the airways. At present, there is no treatment that suppresses the chronic inflammation of the disease, and COPD patients often succumb to the condition. Excessive oxidative stress caused by smoke inhalation is a major driving force of the disease. The transcription factor NRF2 is a critical player in the battle against oxidative stress and its function is impaired in COPD. Increasing NRF2 activity may therefore be a viable therapeutic option for COPD treatment. We show that down regulation of KEAP1, a NRF2 inhibitor, protects primary human lung epithelial cells from cigarette-smoke-extract (CSE) induced cell death in an established in vitro model of radical stress. To identify new potential drug targets with a similar effect, we performed a siRNA screen of the 'druggable' genome using a NRF2 transcriptional reporter cell line. This screen identified multiple genes that when down regulated increased NRF2 transcriptional activity and provided a survival benefit in the in vitro model. Our results suggest that inhibiting components of the ubiquitin-proteasome system will have the strongest effects on NRF2 transcriptional activity by increasing NRF2 levels. We also find that down regulation of the small GTPase Rab28 or the Estrogen Receptor ESRRA provide a survival benefit. Rab28 knockdown increased NRF2 protein levels, indicating that Rab28 may regulate NRF2 proteolysis. Conversely ESRRA down regulation increased NRF2 transcriptional activity without affecting NRF2 levels, suggesting a proteasome-independent mechanism

    Enhanced NFκB and AP-1 transcriptional activity associated with antiestrogen resistant breast cancer

    Get PDF
    BACKGROUND: Signaling pathways that converge on two different transcription factor complexes, NFκB and AP-1, have been identified in estrogen receptor (ER)-positive breast cancers resistant to the antiestrogen, tamoxifen. METHODS: Two cell line models of tamoxifen-resistant ER-positive breast cancer, MCF7/HER2 and BT474, showing increased AP-1 and NFκB DNA-binding and transcriptional activities, were studied to compare tamoxifen effects on NFκB and AP-1 regulated reporter genes relative to tamoxifen-sensitive MCF7 cells. The model cell lines were treated with the IKK inhibitor parthenolide (PA) or the proteasome inhibitor bortezomib (PS341), alone and in combination with tamoxifen. Expression microarray data available from 54 UCSF node-negative ER-positive breast cancer cases with known clinical outcome were used to search for potential genes signifying upregulated NFκB and AP-1 transcriptional activity in association with tamoxifen resistance. The association of these genes with patient outcome was further evaluated using node-negative ER-positive breast cancer cases identified from three other published data sets (Rotterdam, n = 209; Amsterdam, n = 68; Basel, n = 108), each having different patient age and adjuvant tamoxifen treatment characteristics. RESULTS: Doses of parthenolide and bortezomib capable of sensitizing the two endocrine resistant breast cancer models to tamoxifen were capable of suppressing NFκB and AP-1 regulated gene expression in combination with tamoxifen and also increased ER recruitment of the transcriptional co-repressor, NCoR. Transcript profiles from the UCSF breast cancer cases revealed three NFκB and AP-1 upregulated genes – cyclin D1, uPA and VEGF – capable of dichotomizing node-negative ER-positive cases into early and late relapsing subsets despite adjuvant tamoxfien therapy and most prognostic for younger age cases. Across the four independent sets of node-negative ER-positive breast cancer cases (UCSF, Rotterdam, Amsterdam, Basel), high expression of all three NFκB and AP-1 upregulated genes was associated with earliest metastatic relapse. CONCLUSION: Altogether, these findings implicate increased NFκB and AP-1 transcriptional responses with tamoxifen resistant breast cancer and early metastatic relapse, especially in younger patients. These findings also suggest that agents capable of preventing NFκB and AP-1 gene activation may prove useful in restoring the endocrine responsiveness of such high-risk ER-positive breast cancers

    Estrogen regulation of apoptosis: how can one hormone stimulate and inhibit?

    Get PDF
    The link between estrogen and the development and proliferation of breast cancer is well documented. Estrogen stimulates growth and inhibits apoptosis through estrogen receptor-mediated mechanisms in many cell types. Interestingly, there is strong evidence that estrogen induces apoptosis in breast cancer and other cell types. Forty years ago, before the development of tamoxifen, high-dose estrogen was used to induce tumor regression of hormone-dependent breast cancer in post-menopausal women. While the mechanisms by which estrogen induces apoptosis were not completely known, recent evidence from our laboratory and others demonstrates the involvement of the extrinsic (Fas/FasL) and the intrinsic (mitochondria) pathways in this process. We discuss the different apoptotic signaling pathways involved in E2 (17β-estradiol)-induced apoptosis, including the intrinsic and extrinsic apoptosis pathways, the NF-κB (nuclear factor-kappa-B)-mediated survival pathway as well as the PI3K (phosphoinositide 3-kinase)/Akt signaling pathway. Breast cancer cells can also be sensitized to estrogen-induced apoptosis through suppression of glutathione by BSO (L-buthionine sulfoximine). This finding has implications for the control of breast cancer with low-dose estrogen and other targeted therapeutic drugs
    corecore