149 research outputs found

    Thermal conductivity profile determination in proton-irradiated ZrC by Spatial and frequency scanning thermal wave methods

    Get PDF
    Using complementary thermal wave methods, the irradiation damaged region of zirconium carbide (ZrC) is characterized by quantifiably profiling the thermophysical property degradation. The ZrC sample was irradiated by a 2.6 MeV proton beam at 600 °C to a dose of 1.75 displacements per atom. Spatial scanning techniques including scanning thermal microscopy (SThM), lock-in infrared thermography (lock-in IRT), and photothermal radiometry (PTR) were used to directly map the in-depth profile of thermal conductivity on a cross section of the ZrC sample. The advantages and limitations of each system are discussed and compared, finding consistent results from all techniques. SThM provides the best resolution finding a very uniform thermal conductivity envelope in the damaged region measuring ∼52 ± 2 μm deep. Frequency-based scanning PTR provides quantification of the thermal parameters of the sample using the SThM measured profile to provide validation of a heating model. Measured irradiated and virgin thermal conductivities are found to be 11.9 ± 0.5 W m−1 K−1 and 26.7 ±1 W m−1 K−1, respectively. A thermal resistance evidenced in the frequency spectra of the PTR results was calculated to be (1.58 ± 0.1) × 10−6 m2 K W−1. The measured thermal conductivity values compare well with the thermal conductivity extracted from the SThM calibrated signal and the spatially scanned PTR. Combined spatial and frequency scanning techniques are shown to provide a valuable, complementary combination for thermal property characterization of proton-irradiated ZrC. Such methodology could be useful for other studies of ion-irradiated materials

    Thermal diffusivity, effusivity and conductivity of CdMnTe mixed crystals

    Get PDF
    Cd1-xMnxTe mixed crystals belong to a class of materials called ‘‘semimagnetic semiconductor’’ or diluted magnetic semiconductor (DMS) with addition of magnetic ions like Mn2+ implemented into crystal structure. The crystals under investigation were grown from the melt by the high pressure high temperature modified Bridgman method in the range of composition 0 < x < 0.7. Thermal properties of these compounds have been investigated by means of photopyroelectric (PPE) calorimetry in both, back and front detection configuration. The values of the thermal diffusivity and effusivity were derived from experimental data. Thermal conductivity of the specimens was calculated from the simple theoretical dependencies between thermal parameters. The influence of Mn concentration on thermal properties of Cd1-xMnxTe crystals have been presented and discussed

    Thermal and Optical Characterization of Undoped and Neodymium-Doped Y3ScAl4O12 Ceramics

    Get PDF
    Y3–3xNd3xSc1Al4O12 (x = 0, 0.01, and 0.02) ceramics were fabricated by sintering at high temperature under vacuum. Unit cell parameter refinement and chemical analysis have been performed. The morphological characterization shows micrograins with no visible defects. The thermal analysis of these ceramics is presented, by measuring the specific heat in the temperature range from 300 to 500 K. Their values at room temperature are in the range 0.81–0.90 J g1–K–1. The thermal conductivity has been determined by two methods: by the experimental measurement of the thermal diffusivity by the photopyroelectric method, and by spectroscopy, evaluating the thermal load. The thermal conductivities are in the range 9.7–6.5 W K–1 m–1 in the temperature interval from 300 to 500 K. The thermooptic coefficients were measured at 632 nm by the dark mode method using a prism coupler, and the obtained values are in the range 12.8–13.3 × 10–6 K–1. The nonlinear refractive index values at 795 nm have been evaluated to calibrate the nonlinear optical response of these materials.This work is supported by the Spanish Government under projects MAT2011-29255-C02-01-02, MAT2013-47395-C4-4-R, and the Catalan Government under project 2014SGR1358. It was also funded by the European Commission under the Seventh Framework Programme, project Cleanspace, FP7-SPACE-2010-1-GA No. 263044
    • …
    corecore