4 research outputs found

    Influence of orbital contributions to the valence band alignment of Bi2O3, Fe2O3, BiFeO3, and Bi0.5Na0.5TiO3

    Get PDF
    The formation of an interface between Bi2O3, Fe2O3, BiFeO3, Bi0.5Na0.5TiO3, and the high work function metallic RuO2 is studied using photoelectron spectroscopy with in situ RuO2 deposition. Schottky barrier heights are derived and the valence band maximum energies of the studied materials are aligned with respect to each other as well as to other functional oxides like SrTiO3 and PbTiO3. The energy band alignment follows systematic trends compared to a large number of oxides, and can be understood in terms of the contribution of Fe 3d and Bi 6s/6p (lone pair) orbitals to electronic states near the valence band maximum. The results indicate that the valence band maxima are largely determined by the local environment of the cations, which allows to estimate valence band maximum energies of oxides with multiple cations from those of their parent binary compounds. The high valence band maximum of BiFeO3 is consistent with reported p-type conduction of acceptor doped material, while the high conduction band minimum makes n-type conduction unlikely

    Influence of hole depletion and depolarizing field on the BaTiO3/La0.6Sr0.4MnO3 interface electronic structure revealed by photoelectron spectroscopy and first-principles calculations

    Get PDF
    International audienceThe effects of the bonding mechanism and band alignment in a ferroelectric (FE) BaTiO3/ferromagneticLa0.6Sr0.4MnO3 heterostructure are studied using x-ray photoelectron spectroscopy and first-principles calculations.The band lineup at the interface is determined by a combination of band bending and polarization-inducedmodification of core-hole screening. A Schottky barrier height for electrons of 1.22 ± 0.17 eV is obtained inthe case of downwards FE polarization of the top layer. The symmetry of the bonding states is emphasizedby integrating the local density of states ±0.2 eV around the Fermi level, and strong dependence on the FEpolarization is found: upwards, polarization stabilizes Ti t2g(xy) orbitals, while downwards, polarization favorsTi t2g(yz) symmetry. It is predicted that the abrupt (La,Sr)|TiO2 interface is magnetoelectrically active, leading toa A-type antiferromagnetic coupling of the first TiO2 interface layer with the underlying manganite layer througha superexchange mechanis

    A Bruch's membrane substitute fabricated from silk fibroin supports the function of retinal pigment epithelial cells in vitro

    No full text
    Silk fibroin provides a promising biomaterial for ocular tissue reconstruction, including the damaged outer blood-retinal barrier of patients afflicted with age-related macular degeneration (AMD). The aim of the present study was to evaluate the function of retinal pigment epithelial (RPE) cells in vitro, when grown on fibroin membranes manufactured to a thickness similar to that of Bruch's membrane (3µm). Confluent cultures of RPE cells (ARPE-19) were established on fibroin membranes and maintained under conditions designed to promote maturation over 4 months. Control cultures were grown on polyester cell culture well inserts (TranswellTM). Cultures established on either material developed a cobblestone morphology, with partial pigmentation, within 12 weeks. Immunocytochemistry at 16 weeks revealed a similar distribution pattern between cultures for F-actin, ZO-1, ezrin, cytokeratin pair 8/18, RPE-65 and Na+/K+-ATPase. Electron microscopy revealed that cultures grown on fibroin displayed a rounder apical surface with a more dense distribution of microvilli. Both cultures avidly ingested fluorescent microspheres coated with vitronectin and bovine serum albumin (BSA), but not controls coated with BSA alone. VEGF and PEDF were detected in the conditioned media collected from above and below the two membrane types. Levels of PEDF were significantly higher than for VEGF on both membranes and a trend was observed towards larger amounts of PEDF in apical compartments. These findings demonstrated that RPE cell functions on fibroin membranes are equivalent to those observed for standard test materials (polyester membranes). As such, these studies support advancement to studies of RPE cell implantation on fibroin membranes in a preclinical model

    Influence of orbital contributions to the valence band alignment of Bi2O3, Fe2O3, BiFeO3, and Bi0.5Na0.5TiO3

    No full text
    The formation of an interface between Bi2O3, Fe2O3, BiFeO3, Bi0.5Na0.5TiO3, and the high work function metallic RuO2 is studied using photoelectron spectroscopy with in situ RuO2 deposition. Schottky barrier heights are derived and the valence band maximum energies of the studied materials are aligned with respect to each other as well as to other functional oxides like SrTiO3 and PbTiO3. The energy band alignment follows systematic trends compared to a large number of oxides, and can be understood in terms of the contribution of Fe 3d and Bi 6s/6p (lone pair) orbitals to electronic states near the valence band maximum. The results indicate that the valence band maxima are largely determined by the local environment of the cations, which allows to estimate valence band maximum energies of oxides with multiple cations from those of their parent binary compounds. The high valence band maximum of BiFeO3 is consistent with reported p-type conduction of acceptor doped material, while the high conduction band minimum makes n-type conduction unlikely
    corecore