2,645 research outputs found
The effect of local lattice distortion on physical properties of hexagonal rubidium tungsten bronze Rb0.23WOy
[[abstract]]Superconducting transition temperature Tc and normal-state resistivity as a function of oxygen content for hexagonal tungsten bronze Rb0.23WOy with 2.90 < y < 3.05 were obtained from transport measurements. It is remarkably interesting that Tc enhances about 50% and room-temperature resistivity increases about three orders of magnitude as oxygen content varies from 2.90 to 3.05. The low-temperature specific heat data indicate that the Einstein-like mode associated with Rb vibration has a dimensionality crossover from 3D to quasi-2D as oxygen content increases from 2.90 to 3.05. W L3-edge x-ray absorption spectra further show that W-O bond intensity gradually weakens as oxygen content increases, indicative of more oxygen disorder present in the oxygen-rich samples. The observed results strongly suggest that the local lattice distortion induced by oxygen disorder not only modulates Rb vibration, possibly coupled to electron-phonon interaction responsible for superconductivity, and also reduces the charge transfer between O 2p and W 5d orbital in the vicinity of y = 3.00. This scenario can possibly account for significant increases of Tc and normal-state resistivity of Rb0.23WOy as oxygen content slightly changes from 2.90 to 3.05.[[incitationindex]]SCI[[booktype]]電子
Nitrogen-Functionalized Graphene Nanoflakes (GNFs:N): Tunable Photoluminescence and Electronic Structures
This study investigates the strong photoluminescence (PL) and X-ray excited
optical luminescence observed in nitrogen-functionalized 2D graphene nanoflakes
(GNFs:N), which arise from the significantly enhanced density of states in the
region of {\pi} states and the gap between {\pi} and {\pi}* states. The
increase in the number of the sp2 clusters in the form of pyridine-like N-C,
graphite-N-like, and the C=O bonding and the resonant energy transfer from the
N and O atoms to the sp2 clusters were found to be responsible for the blue
shift and the enhancement of the main PL emission feature. The enhanced PL is
strongly related to the induced changes of the electronic structures and
bonding properties, which were revealed by the X-ray absorption near-edge
structure, X-ray emission spectroscopy, and resonance inelastic X-ray
scattering. The study demonstrates that PL emission can be tailored through
appropriate tuning of the nitrogen and oxygen contents in GNFs and pave the way
for new optoelectronic devices.Comment: 8 pages, 6 figures (including toc figure
Semiparametric Multivariate Accelerated Failure Time Model with Generalized Estimating Equations
The semiparametric accelerated failure time model is not as widely used as
the Cox relative risk model mainly due to computational difficulties. Recent
developments in least squares estimation and induced smoothing estimating
equations provide promising tools to make the accelerate failure time models
more attractive in practice. For semiparametric multivariate accelerated
failure time models, we propose a generalized estimating equation approach to
account for the multivariate dependence through working correlation structures.
The marginal error distributions can be either identical as in sequential event
settings or different as in parallel event settings. Some regression
coefficients can be shared across margins as needed. The initial estimator is a
rank-based estimator with Gehan's weight, but obtained from an induced
smoothing approach with computation ease. The resulting estimator is consistent
and asymptotically normal, with a variance estimated through a multiplier
resampling method. In a simulation study, our estimator was up to three times
as efficient as the initial estimator, especially with stronger multivariate
dependence and heavier censoring percentage. Two real examples demonstrate the
utility of the proposed method
Opto-mechanical measurement of micro-trap via nonlinear cavity enhanced Raman scattering spectrum
High-gain resonant nonlinear Raman scattering on trapped cold atoms within a
high-fineness ring optical cavity is simply explained under a nonlinear
opto-mechanical mechanism, and a proposal using it to detect frequency of
micro-trap on atom chip is presented. The enhancement of scattering spectrum is
due to a coherent Raman conversion between two different cavity modes mediated
by collective vibrations of atoms through nonlinear opto-mechanical couplings.
The physical conditions of this technique are roughly estimated on Rubidium
atoms, and a simple quantum analysis as well as a multi-body semiclassical
simulation on this nonlinear Raman process is conducted.Comment: 7 pages, 2 figure
A Matrix Model for the Null-Brane
The null-brane background is a simple smooth 1/2 BPS solution of string
theory. By tuning a parameter, this background develops a big crunch/big bang
type singularity. We construct the DLCQ description of this space-time in terms
of a Yang-Mills theory on a time-dependent space-time. Our dual Matrix
description provides a non-perturbative framework in which the fate of both
(null) time, and the string S-matrix can be studied.Comment: 26 pages, LaTeX; references adde
Active Tension Network model suggests an exotic mechanical state realized in epithelial tissues.
Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the complex mechanisms through which stress and deformation affect cell behavior remains an open problem. Here we formulate and analyze the Active Tension Network (ATN) model, which assumes that the mechanical balance of cells within a tissue is dominated by cortical tension and introduces tension-dependent active remodeling of the cortex. We find that ATNs exhibit unusual mechanical properties. Specifically, an ATN behaves as a fluid at short times, but at long times supports external tension like a solid. Furthermore, an ATN has an extensively degenerate equilibrium mechanical state associated with a discrete conformal - "isogonal" - deformation of cells. The ATN model predicts a constraint on equilibrium cell geometries, which we demonstrate to approximately hold in certain epithelial tissues. We further show that isogonal modes are observed in the fruit y embryo, accounting for the striking variability of apical areas of ventral cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic mechanical states, the study of which helps to understand biological phenomena
Liquid Chromatography Electron Capture Dissociation Tandem Mass Spectrometry (LC-ECD-MS/MS) versus Liquid Chromatography Collision-induced Dissociation Tandem Mass Spectrometry (LC-CID-MS/MS) for the Identification of Proteins
Electron capture dissociation (ECD) offers many advantages over the more traditional fragmentation techniques for the analysis of peptides and proteins, although the question remains: How suitable is ECD for incorporation within proteomic strategies for the identification of proteins? Here, we compare LC-ECD-MS/MS and LC-CID-MS/MS as techniques for the identification of proteins.Experiments were performed on a hybrid linear ion trap–Fourier transform ion cyclotron resonance mass spectrometer. Replicate analyses of a six-protein (bovine serum albumin, apo-transferrin,lysozyme, cytochrome c, alcohol dehydrogenase, and β-galactosidase) tryptic digest were performed and the results analyzed on the basis of overall protein sequence coverage and sequence tag lengths within individual peptides. The results show that although protein coverage was lower for LC-ECDMS/MS than for LC-CID-MS/MS, LC-ECD-MS/MS resulted in longer peptide sequence tags,providing greater confidence in protein assignment
Heterogeneous 2.5D integration on through silicon interposer
© 2015 AIP Publishing LLC. Driven by the need to reduce the power consumption of mobile devices, and servers/data centers, and yet continue to deliver improved performance and experience by the end consumer of digital data, the semiconductor industry is looking for new technologies for manufacturing integrated circuits (ICs). In this quest, power consumed in transferring data over copper interconnects is a sizeable portion that needs to be addressed now and continuing over the next few decades. 2.5D Through-Si-Interposer (TSI) is a strong candidate to deliver improved performance while consuming lower power than in previous generations of servers/data centers and mobile devices. These low-power/high-performance advantages are realized through achievement of high interconnect densities on the TSI (higher than ever seen on Printed Circuit Boards (PCBs) or organic substrates), and enabling heterogeneous integration on the TSI platform where individual ICs are assembled at close proximity
Microbe-Specific C3b Deposition in the Horseshoe Crab Complement System in a C2/Factor B-Dependent or -Independent Manner
Complement C3 plays an essential role in the opsonization of pathogens in the mammalian complement system, whereas the molecular mechanism underlying C3 activation in invertebrates remains unknown. To understand the molecular mechanism of C3b deposition on microbes, we characterized two types of C2/factor B homologs (designated TtC2/Bf-1 and TtC2/Bf-2) identified from the horseshoe crab Tachypleus tridentatus. Although the domain architectures of TtC2/Bf-1 and TtC2/Bf-2 were identical to those of mammalian homologs, they contained five-repeated and seven-repeated complement control protein domains at their N-terminal regions, respectively. TtC2/Bf-1 and TtC2/Bf-2 were synthesized and glycosylated in hemocytes and secreted to hemolymph plasma, which existed in a complex with C3 (TtC3), and their activation by microbes was absolutely Mg2+-dependent. Flow cytometric analysis revealed that TtC3b deposition was Mg2+-dependent on Gram-positive bacteria or fungi, but not on Gram-negative bacteria. Moreover, this analysis demonstrated that Ca2+-dependent lectins (C-reactive protein-1 and tachylectin-5A) were required for TtC3b deposition on Gram-positive bacteria, and that a Ca2+-independent lectin (Tachypleus plasma lectin-1) was definitely indispensable for TtC3b deposition on fungi. In contrast, a horseshoe crab lipopolysaccharide-sensitive protease factor C was necessary and sufficient to deposit TtC3b on Gram-negative bacteria. We conclude that plasma lectins and factor C play key roles in microbe-specific TtC3b deposition in a C2/factor B-dependent or -independent manner
- …