3,929 research outputs found
Data fusion with artificial neural networks (ANN) for classification of earth surface from microwave satellite measurements
A data fusion system with artificial neural networks (ANN) is used for fast and accurate classification of five earth surface conditions and surface changes, based on seven SSMI multichannel microwave satellite measurements. The measurements include brightness temperatures at 19, 22, 37, and 85 GHz at both H and V polarizations (only V at 22 GHz). The seven channel measurements are processed through a convolution computation such that all measurements are located at same grid. Five surface classes including non-scattering surface, precipitation over land, over ocean, snow, and desert are identified from ground-truth observations. The system processes sensory data in three consecutive phases: (1) pre-processing to extract feature vectors and enhance separability among detected classes; (2) preliminary classification of Earth surface patterns using two separate and parallely acting classifiers: back-propagation neural network and binary decision tree classifiers; and (3) data fusion of results from preliminary classifiers to obtain the optimal performance in overall classification. Both the binary decision tree classifier and the fusion processing centers are implemented by neural network architectures. The fusion system configuration is a hierarchical neural network architecture, in which each functional neural net will handle different processing phases in a pipelined fashion. There is a total of around 13,500 samples for this analysis, of which 4 percent are used as the training set and 96 percent as the testing set. After training, this classification system is able to bring up the detection accuracy to 94 percent compared with 88 percent for back-propagation artificial neural networks and 80 percent for binary decision tree classifiers. The neural network data fusion classification is currently under progress to be integrated in an image processing system at NOAA and to be implemented in a prototype of a massively parallel and dynamically reconfigurable Modular Neural Ring (MNR)
Decoherent Scattering of Light Particles in a D-Brane Background
We discuss the scattering of two light particles in a D-brane background. It
is known that, if one light particle strikes the D brane at small impact
parameter, quantum recoil effects induce entanglement entropy in both the
excited D brane and the scattered particle. In this paper we compute the
asymptotic `out' state of a second light particle scattering off the D brane at
large impact parameter, showing that it also becomes mixed as a consequence of
quantum D-brane recoil effects. We interpret this as a non-factorizing
contribution to the superscattering operator S-dollar for the two light
particles in a Liouville D-brane background, that appears when quantum D-brane
excitations are taken into account.Comment: 18 pages LATEX, one figure (incorporated
Dynamics of on-orbit construction process
The topics covered are presented in viewgraph form and include the following: problem definition and motivation; survey of current technology; focus problems; approach; progress/discussion; and future direction and anticipated results
Unimodular Loop Quantum Cosmology
Unimodular gravity is based on a modification of the usual Einstein-Hilbert
action that allows one to recover general relativity with a dynamical
cosmological constant. It also has the interesting property of providing, as
the momentum conjugate to the cosmological constant, an emergent clock
variable. In this paper we investigate the cosmological reduction of unimodular
gravity, and its quantization within the framework of flat homogeneous and
isotropic loop quantum cosmology. It is shown that the unimodular clock can be
used to construct the physical state space, and that the fundamental features
of the previous models featuring scalar field clocks are reproduced. In
particular, the classical singularity is replaced by a quantum bounce, which
takes place in the same condition as obtained previously. We also find that
requirement of semi-classicality demands the expectation value of the
cosmological constant to be small (in Planck units). The relation to spin foam
models is also studied, and we show that the use of the unimodular time
variable leads to a unique vertex expansion.Comment: 26 pages. Revised version taking into account referee's comment
Applications of simulation technique on debris-flow hazard zone delineation: a case study in Hualien County, Taiwan
Debris flows pose severe hazards to communities in mountainous areas, often resulting in the loss of life and property. Helping debris-flow-prone communities delineate potential hazard zones provides local authorities with useful information for developing emergency plans and disaster management policies. In 2003, the Soil and Water Conservation Bureau of Taiwan proposed an empirical model to delineate hazard zones for all creeks (1420 in total) with potential of debris flows and utilized the model to help establish a hazard prevention system. However, the model does not fully consider hydrologic and physiographical conditions for a given creek in simulation. The objective of this study is to propose new approaches that can improve hazard zone delineation accuracy and simulate hazard zones in response to different rainfall intensity. In this study, a two-dimensional commercial model FLO-2D, physically based and taking into account the momentum and energy conservation of flow, was used to simulate debris-flow inundated areas. <br><br> Sensitivity analysis with the model was conducted to determine the main influence parameters which affect debris flow simulation. Results indicate that the roughness coefficient, yield stress and volumetric sediment concentration dominate the computed results. To improve accuracy of the model, the study examined the performance of the rainfall-runoff model of FLO-2D as compared with that of the HSPF (Hydrological Simulation Program Fortran) model, and then the proper values of the significant parameters were evaluated through the calibration process. Results reveal that the HSPF model has a better performance than the FLO-2D model at peak flow and flow recession period, and the volumetric sediment concentration and yield stress can be estimated by the channel slope. The validation of the model for simulating debris-flow hazard zones has been confirmed by a comparison of field evidence from historical debris-flow disaster data. The model can successfully replicate the influence zone of the debris-flow disaster event with an acceptable error and demonstrate a better result than the empirical model adopted by the Soil and Water Conservation Bureau of Taiwan
Tachyon Field Quantization and Hawking Radiation
We quantize the tachyon field in a static two dimensional dilaton gravity
black hole background,and we calculate the Hawking radiation rate. We find that
the thermal radiation flux, due to the tachyon field, is larger than the
conformal matter one. We also find that massive scalar fields which do not
couple to the dilaton, do not give any contribution to the thermal radiation,
up to terms quadratic in the scalar curvature.Comment: 13 pages, Latex file, 1 figure available upon reques
- …