51 research outputs found

    Unveiling the dynamic interplay between the hub- and spoke-components of the brain's semantic system and its impact on human behaviour.

    Get PDF
    The neural architecture of semantic knowledge comprises two key structures: (i) A set of widely dispersed regions, located adjacent to the sensorimotor cortices, serve as spokes that represent various modality-specific and context-dependent contents. (ii) The anterior-temporal lobe (ATL) serves as a hub that computes the nonlinear mappings required to transform modality-specific information into pan-modality, multifaceted concepts. Little is understood regarding whether neural dynamics between the hub and spokes might flexibly alter depending on the nature of a concept and how it impinges upon behaviour. Using fMRI, we demonstrate for the first time that the ATL serves as a 'pivot' which dynamically forms flexible long-range networks with cortical modules specialised for different domains (in the present case, the knowledge about actions and places). In two experiments, we manipulated semantic congruity and asked participants to recognise visually presented items. In Experiment 1 (dual-object displays), the ATL increased its functional coupling with the bilateral frontoparietal action-sensitive system when the objects formed a pair that permitted semantically meaningful action. In Experiment 2 (objects embedded in a scene), the ATL augmented its coupling with the retrosplenial cortex of the place-sensitive system when the objects and scene formed a semantically coherent ensemble. Causative connectivity revealed that, while communication between the hub and spokes was bidirectional, the hub's directional impact on spokes dwarfed the strength of the inverse spoke-to-hub connectivity. Furthermore, the size of behavioural congruity effects co-varied with the strength of neural coupling between the ATL hub and action- / place-related spokes, evident both at the within-individual level (the behavioural fluctuation across scanning runs) and between-individual level (the behavioural variation of between participants). Together, these findings have important implications for understanding the machinery that links neural dynamics with semantic cognition

    Semantic cognition versus numerical cognition : a topographical perspective

    Get PDF
    Semantic cognition and numerical cognition are dissociable faculties with separable neural mechanisms. However, recent advances in the cortical topography of the temporal and parietal lobes have revealed a common organisational principle for the neural representations of semantics and numbers. We discuss their convergence and divergence through the prism of topography

    Controlled semantic cognition relies upon dynamic and flexible interactions between the executive 'semantic control' and hub-and-spoke 'semantic representation' systems.

    Get PDF
    Built upon a wealth of neuroimaging, neurostimulation, and neuropsychology data, a recent proposal set forth a framework termed controlled semantic cognition (CSC) to account for how the brain underpins the ability to flexibly use semantic knowledge (Lambon Ralph et al., 2017; Nature Reviews Neuroscience). In CSC, the 'semantic control' system, underpinned predominantly by the prefrontal cortex, dynamically monitors and modulates the 'semantic representation' system that consists of a 'hub' (anterior temporal lobe, ATL) and multiple 'spokes' (modality-specific areas). CSC predicts that unfamiliar and exacting semantic tasks should intensify communication between the 'control' and 'representation' systems, relative to familiar and less taxing tasks. In the present study, we used functional magnetic resonance imaging (fMRI) to test this hypothesis. Participants paired unrelated concepts by canonical colours (a less accustomed task - e.g., pairing ketchup with fire-extinguishers due to both being red) or paired well-related concepts by semantic relationship (a typical task - e.g., ketchup is related to mustard). We found the 'control' system was more engaged by atypical than typical pairing. While both tasks activated the ATL 'hub', colour pairing additionally involved occipitotemporal 'spoke' regions abutting areas of hue perception. Furthermore, we uncovered a gradient along the ventral temporal cortex, transitioning from the caudal 'spoke' zones preferring canonical colour processing to the rostral 'hub' zones preferring semantic relationship. Functional connectivity also differed between the tasks: Compared with semantic pairing, colour pairing relied more upon the inferior frontal gyrus, a key node of the control system, driving enhanced connectivity with occipitotemporal 'spoke'. Together, our findings characterise the interaction within the neural architecture of semantic cognition - the control system dynamically heightens its connectivity with relevant components of the representation system, in response to different semantic contents and difficulty levels.This research was funded by an MRC programme grant to MALR (MR/J004146/1), a Sir Henry Wellcome Fellowship (201381/Z/16/Z) to RC, and a Stepping Stone Award (097820; supported by the Welcome Institutional Strategic Support Fund) to RC

    A middle ground where executive control meets semantics : the neural substrates of semantic control are topographically sandwiched between the multiple-demand and default-mode systems

    Get PDF
    Semantic control is the capability to operate on meaningful representations, selectively focusing on certain aspects of meaning while purposefully ignoring other aspects based on one’s behavioral aim. This ability is especially vital for comprehending figurative/ambiguous language. It remains unclear why and how regions involved in semantic control seem reliably juxtaposed alongside other functionally specialized regions in the association cortex, prompting speculation about the relationship between topography and function. We investigated this issue by characterizing how semantic control regions topographically relate to the default-mode network (associated with memory and abstract cognition) and multiple-demand network (associated with executive control). Topographically, we established that semantic control areas were sandwiched by the default-mode and multi-demand networks, forming an orderly arrangement observed both at the individual and group level. Functionally, semantic control regions exhibited “hybrid” responses, fusing generic preferences for cognitively demanding operation (multiple-demand) and for meaningful representations (default-mode) into a domain-specific preference for difficult operation on meaningful representations. When projected onto the principal gradient of human connectome, the neural activity of semantic control showed a robustly dissociable trajectory from visuospatial control, implying different roles in the functional transition from sensation to cognition. We discuss why the hybrid functional profile of semantic control regions might result from their intermediate topographical positions on the cortex

    Distinct and Common Neural Coding of Semantic and Non-semantic Control Demands

    Get PDF
    The flexible retrieval of knowledge is critical in everyday situations involving problem solving, reasoning and social interaction. Current theories emphasise the importance of a left-lateralised semantic control network (SCN) in supporting flexible semantic behaviour, while a bilateral multiple-demand network (MDN) is implicated in executive functions across domains. No study, however, has examined whether semantic and non-semantic demands are reflected in a common neural code within regions specifically implicated in semantic control. Using functional MRI and univariate parametric modulation analysis as well as multivariate pattern analysis, we found that semantic and non-semantic demands gave rise to both similar and distinct neural responses across control-related networks. Though activity patterns in SCN and MDN could decode the difficulty of both semantic and verbal working memory decisions, there was no shared common neural coding of cognitive demands in SCN regions. In contrast, regions in MDN showed common patterns across manipulations of semantic and working memory control demands, with successful cross-classification of difficulty across tasks. Therefore, SCN and MDN can be dissociated according to the information they maintain about cognitive demands

    Endocrinologic, neurologic, and visual morbidity after treatment for craniopharyngioma

    Get PDF
    Craniopharyngiomas are locally aggressive tumors which typically are focused in the sellar and suprasellar region near a number of critical neural and vascular structures mediating endocrinologic, behavioral, and visual functions. The present study aims to summarize and compare the published literature regarding morbidity resulting from treatment of craniopharyngioma. We performed a comprehensive search of the published English language literature to identify studies publishing outcome data of patients undergoing surgery for craniopharyngioma. Comparisons of the rates of endocrine, vascular, neurological, and visual complications were performed using Pearson’s chi-squared test, and covariates of interest were fitted into a multivariate logistic regression model. In our data set, 540 patients underwent surgical resection of their tumor. 138 patients received biopsy alone followed by some form of radiotherapy. Mean overall follow-up for all patients in these studies was 54 ± 1.8 months. The overall rate of new endocrinopathy for all patients undergoing surgical resection of their mass was 37% (95% CI = 33–41). Patients receiving GTR had over 2.5 times the rate of developing at least one endocrinopathy compared to patients receiving STR alone or STR + XRT (52 vs. 19 vs. 20%, χ2P < 0.00001). On multivariate analysis, GTR conferred a significant increase in the risk of endocrinopathy compared to STR + XRT (OR = 3.45, 95% CI = 2.05–5.81, P < 0.00001), after controlling for study size and the presence of significant hypothalamic involvement. There was a statistical trend towards worse visual outcomes in patients receiving XRT after STR compared to GTR or STR alone (GTR = 3.5% vs. STR 2.1% vs. STR + XRT 6.4%, P = 0.11). Given the difficulty in obtaining class 1 data regarding the treatment of this tumor, this study can serve as an estimate of expected outcomes for these patients, and guide decision making until these data are available

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/
    • 

    corecore