198 research outputs found

    Analytic continuation-free Green's function approach to correlated electronic structure calculations

    Get PDF
    We present a new charge self-consistent scheme combining Density Functional and Dynamical Mean Field Theory, which uses Green's function of multiple scattering-type. In this implementation the many-body effects are incorporated into the Kohn-Sham iterative scheme without the need for the numerically ill-posed analytic continuation of the Green's function and of the self-energy. This is achieved by producing the Kohn-Sham Hamiltonian in the sub-space of correlated partial waves and allows to formulate the Green's function directly on the Matsubara axis. The spectral moments of the Matsubara Green's function enable us to put together the real space charge density, therefore the charge self-consistency can be achieved. Our results for the spectral functions (density of states) and equation of state curves for transition metal elements, Fe, Ni and FeAl compound agree very well with those of Hamiltonian based LDA+DMFT implementations. The current implementation improves on numerical accuracy, requires a minimal effort besides the multiple scattering formulation and can be generalized in several ways that are interesting for applications to real materials

    Typical-medium, multiple-scattering theory for disordered systems with Anderson localization

    Full text link
    The typical medium dynamical cluster approximation (TMDCA) is reformulated in the language of multiple scattering theory to make possible first principles calculations of the electronic structure of substitutionally disordered alloys including the effect of Anderson localization. The TMDCA allows for a systematic inclusion of non-local multi-site correlations and at same time provides an order parameter, the typical density of states, for the Anderson localization transition. The relation between the dynamical cluster approximation and the multiple scattering theory is analyzed, and is illustrated for a tight-binding model.Comment: 15 pages, 11 figure

    Rare-earth impurities in Co2_2MnSi: an opportunity to improve Half-Metallicity at finite temperatures

    Full text link
    We analyse the effects of doping Holmium impurities into the full-Heusler ferromagnetic alloy Co2_2MnSi. Experimental results, as well as theoretical calculations within Density Functional Theory in the "Local Density Approximation plus Hubbard U" framework show that the holmium moment is aligned antiparallely to that of the transition metal atoms. According to the electronic structure calculations, substituting Ho on Co sites introduces a finite density of states in the minority spin gap, while substitution on the Mn sites preserves the half-metallic character.Comment: 22 pages, 8 figures. published in PR

    Static corrections versus dynamic correlation effects in the valence band Compton profile spectra of Ni

    Full text link
    We compute the Compton profile of Ni using the Local Density Approximation of Density Functional Theory supplemented with electronic correlations treated at different levels. The total/magnetic Compton profiles show not only quantitative but also qualitative significant differences depending weather Hubbard corrections are treated at a mean field +U or in a more sophisticated dynamic way. Our aim is to discuss the range and capability of electronic correlations to modify the kinetic energy along specific spatial directions. The second and the fourth order moments of the difference in the Compton profiles are discussed as a function of the strength of local Coulomb interaction UU.Comment: 10 pages, 7 figs., submitted to PR

    Scaling behavior of the momentum distribution of a quantum Coulomb system in a confining potential

    Full text link
    We calculate the single-particle momentum distribution of a quantum many-particle system in the presence of the Coulomb interaction and a confining potential. The region of intermediate momenta, where the confining potential dominates, marks a crossover from a Gaussian distribution valid at low momenta to a power-law behavior valid at high momenta. We show that for all momenta the momentum distribution can be parametrized by a qq-Gaussian distribution whose parameters are specified by the confining potential. Furthermore, we find that the functional form of the probability of transitions between the confined ground state and the nthn^{th} excited state is invariant under scaling of the ratio Q2/νnQ^2/\nu_n, where QQ is the transferred momentum and νn\nu_n is the corresponding excitation energy. Using the scaling variable Q2/νnQ^2/\nu_n the maxima of the transition probabilities can also be expressed in terms of a qq-Gaussian.Comment: 6 pages, 5 figure

    Multiple scattering formalism for correlated systems: A KKR+DMFT approach

    Get PDF
    We present a charge and self-energy self-consistent computational scheme for correlated systems based on the Korringa-Kohn-Rostoker (KKR) multiple scattering theory with the many-body effects described by the means of dynamical mean field theory (DMFT). The corresponding local multi-orbital and energy dependent self-energy is included into the set of radial differential equations for the single-site wave functions. The KKR Green's function is written in terms of the multiple scattering path operator, the later one being evaluated using the single-site solution for the tt-matrix that in turn is determined by the wave functions. An appealing feature of this approach is that it allows to consider local quantum and disorder fluctuations on the same footing. Within the Coherent Potential Approximation (CPA) the correlated atoms are placed into a combined effective medium determined by the dynamical mean field theory (DMFT) self-consistency condition. Results of corresponding calculations for pure Fe, Ni and Fex_{x}Ni1−x_{1-x} alloys are presented.Comment: 25 pages, 5 fig. acepted PR
    • …
    corecore