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Abstract
We present a charge and self-energy self-consistent computational scheme for correlated systems 

based on the Korringa-Kohn-Rostoker (KKR) multiple scattering theory with the many-body ef­

fects described by the means of dynamical mean field theory (DMFT). The corresponding local 

multi-orbital and energy dependent self-energy is included into the set of radial differential equa­

tions for the single-site wave functions. The KKR Green’s function is written in terms of the 

multiple scattering path operator, the later one being evaluated using the single-site solution for 

the t-m atrix tha t in turn  is determined by the wave functions. An appealing feature of this ap­

proach is that it allows to consider local quantum and disorder fluctuations on the same footing. 

W ithin the Coherent Potential Approximation (CPA) the correlated atoms are placed into a com­

bined effective medium determined by the dynamical mean field theory (DMFT) self-consistency 

condition. Results of corresponding calculations for pure Fe, Ni and FexNi1-x alloys are presented.

PACS numbers: 71.15.Rf, 71.20.Be, 82.80.Pv, 71.70.Ej
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I. IN T R O D U C T IO N

One of the  first band  structu re  m ethods form ulated in term s of G reen’s functions is the 

K K R  m ethod of Koringa, Kohn and Rostoker [1, 2]. A lthough it is no t counted am ong the 

fastest band struc tu re  m ethods, it is usually regarded as a very accurate technique. The 

advantage of the  K K R  m ethod lies in the  transparen t m ultiple scattering  form alism  which 

allows to  express the  G reen’s function in term s of single-site scattering  and geom etrical 

or s truc tu ra l quantities. A second ou tstand ing  feature of the  K K R  m ethod  is the  Dyson 

equation relating the  G reen’s function of a p ertu rbed  system  w ith  the  G reen’s function of 

the  corresponding u n pertu rbed  reference system. Because of th is property, the  K K R  G reen’s 

function m ethod allows to  deal w ith substitu tional disorder including b o th  diluted im purities 

and  concentrated alloys in the  framework of the  Coherent Poten tial A pproxim ation (CPA)

[3]. W ith in  th is approach (KKR-CPA) the  propagation  of an electron in an  alloy is regarded 

as a succession of elem entary scattering  processes due to  random  atom ic scatterers, w ith an 

average taken over all configurations of the  atom s. This problem  can be solved assum ing 

th a t a given scattering  center is em bedded in an  effective m edium  whose choice is open and 

can be m ade in a self-consistent way. The physical condition corresponding to  the  CPA is 

simply th a t a single scatterer em bedded in the  effective CPA m edium  should produce no 

fu rther scattering  on the  average. A similar philosophy is applied also when dealing w ith 

m any-body problem s for crystals in the  fram ework of the  so called dynam ical m ean field 

theory  (D M FT, for review see Ref. 4). Thus it seems to  be ra th e r n a tu ra l to  combine the 

D M FT  and K K R  m ethods to  arrive a t a very reliable and  flexible band  structu re  scheme th a t 

include correlation effects beyond the  s tandard  local density (LDA) or generalized (GGA) 

approxim ations. In fact the  com bination of the  K K R-CPA  for disordered alloys and the 

D M FT  scheme is based on the  same argum ents as used by Drchal et a l .[5] when combining 

the  TB-LM TO  G reen’s function m ethod for alloys [6] w ith the  D M FT. In contrast to  their 

approach, however, the  form alism  presented below allows to  incorporate correlation effects 

via a corresponding self-energy when calculating the  electronic single-site wave functions.

F irst a ttem p ts  to  achieve a self-consistent description of local correlation effects in crys­

tals have been m ade already m any years ago. In the  th ird  paper of a famous series H ub­

bard  [7] has in troduced an alloy analogy and by an appropria te  decoupling scheme for the 

G reen’s function a set of equations has been derived th a t represent a self-consistent formu-
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la tion  equivalent to  the  CPA approxim ation. In contrast to  the  D M FT  the  “H ubbard  III” 

approxim ation considers quantum  on-site fluctuations as sta tic  ones which leads to  some 

shortcom ings such as violation of some Fermi liquid properties, missing of the  so called 

K ondo peak near the  m etal-insu lator transition  [4]. Keeping in m ind the  above conceptual 

analogies it is our purpose to  present here a combined Local D ensity A pproxim ation and 

D ynam ical M ean Field Theory (LD A +D M FT) electronic s truc tu re  technique, including the 

case of disordered solids, in the  framework of the  K K R  m ethod. The m any-body correlation 

effects are trea ted  by m eans of the  D M FT, while the  disorder is described in the  fram e­

work of the  CPA. Taking into account the  local na tu re  of the  D M FT  approxim ation the 

self-energy is represented by a local complex energy dependent quantity  (which is a m atrix  

in o rb ital indices) viewed as a contribution to  the  electronic potential. We note th a t for 

a general non-local energy dependent po ten tial m ultiple scattering  theory offers a solution 

known as the  optical po ten tial [8]. However, the  nonlocal self-energy is far too  com plicated 

to  be used in a realistic com putation.

Very recently a combined L D A +D M FT  com putational scheme was proposed in which 

the  so called Exact M uffin-tin band  struc tu re  m ethod was used. In the  EM TO  approach 

[9, 10, 11] the  one-electron effective po ten tial is represented by the  optim ized overlapping 

muffin-tin po ten tial which is considered as the  best possible spherical approxim ation to  the 

full-one electron potential. In essence the  one-electron G reen’s function is evaluated on a 

complex contour similarly to  the  screened K K R  technique, from which it was derived. In 

the  itera tion  procedure the  L D A +D M FT  G reen’s function is used to  calculate the  charge 

and  spin densities. Finally, for the  charge self-consistent calculation one constructs the  new 

LDA effective po ten tial from the  spin and  charge densities [12], using the  Poisson equation 

in the  spherical cell approxim ation [13].

In contrast to  the  EM TO  im plem entation [12], the  present work follows a n a tu ra l de­

velopment in which the  self-energy is added directly to  the  coupled radial differential equa­

tions which determ ine the  electronic wave function w ithin a po ten tia l well and this way the 

single-site t-m atrix . Because th is way also the  scattering  p a th  operato r of m ultiple sca tte r­

ing theory  used to  set up the  electronic G reen’s function is determ ined unambiguously, no 

fu rther approxim ations are needed to  achieve charge self-consistency.

The paper is organized as follows. Section II presents a general form ulation of the  p rob­

lem. Section IIA  provides an  extension of the  derivation of the  m ultiple scattering  G reen’s
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function to  include the  self-energy, and in particu lar provides the  inform ation on the  many- 

body solver. Section IIB  describes the  m any-body solver used in our calculation, th a t is 

based on a modified fluctuating exchange in teraction  approxim ation. The combined self­

consistency cycle is presented in section II D. Finally, results and  discussions are presented 

in section III.

II. F O R M U L A T IO N  O F  T H E  P R O B L E M

The D M FT  m ethod has already been im plem ented w ithin several band  structu re  m ethods 

based on a wave function formalism: first in the  linear m uffin-tin orb ital m ethod in atom ic 

sphere approxim ation (ASA-LM TO) [14, 15, 16] and  then  in full-potential LM TO [17, 18], 

as well as in a screened K K R  or exact muffin-tin orbitals approach (E M T O )[12]. The 

em erged L D A +D M FT  m ethod can be used for calculating the  electronic structu re  for a 

large variety of systems w ith  different streng th  of the  electronic correlations (for a review, 

see Refs. 19, 20). To underline the  im portance of com plete L D A +D M FT  self-consistency 

we m ention th a t the  first successful a ttem p t to  combine the  D M FT  w ith  LDA charge self­

consistency gave an  im portan t insight into a long-standing problem  of phase diagram  and 

localization in f-electron systems [17, 18] and has been used also to  describe correlation effects 

in half-m etallic ferrom agnetic m aterials like NiMnSb [21]. As an  alternative to  the  above 

m entioned band  structu re  m ethods, accurate self-consistent m ethods for solving the  local 

K ohn-Sham  equations based on LDA in term s of G reen’s functions have been developed 

w ithin the  m ultiple scattering  theory  (K K R -m ethod) [22, 23, 24, 25]. For th a t reason 

the  K K R -m ethod can be combined, as it will be shown below, in a n a tu ra l way w ith the 

L D A +D M FT  approach. A further appealing feature of this scheme is th a t the  CPA alloy 

theory can also be incorporated very easily.

In order to  account w ithin LD A -band struc tu re  calculations for correlations an improved 

hybrid H am iltonian was proposed by Anisimov et a l.[26, 27]. In its m ost general form  such 

a H am iltonian is w ritten  as

H  =  H l d a  +  H u  — H D c  , (1)

where H LDa stands for the  ordinary  LDA H am iltonian, H v  describes the  effective 

electron-electron in teraction and  the  one-particle H am iltonian H Dc serves to  elim inate dou-
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ble counting of the  interactions already accounted for by H LDa.

Using second quantization  a ra th e r general expression for H u is given by:

= \ E ■ (2)
n,ijkl

where n  runs over all the  sites of the  crystal R n and  the  creation ( C )  and  annihilation 

(C) operators are defined w ith respect to  some subset of localized orbitals ^ ( f  — R n ). The 

constants U jkl are m atrix  elements of the  screened Coulomb interaction v ( f  — f ' ):

Ujkl =  ƒ  0 i( f  — Rn )4>jj ( f '  — R n )v(f — f  ')0k ( f '  — Rn )0 l(f  — Rn ) d fd f ' . (3)

The resulting m any-particle H am iltonian can not be diagonalized exactly, thus various m eth ­

ods were developed in the  past to  find an  approxim ate solution [4]. Among them  one of the 

m ost prom ising approaches is to  solve Eq. (1) w ithin dynam ical m ean field theory, a m ethod 

developed originally to  deal w ith the  H ubbard model.

The m ain idea of D M FT  is to  m ap a periodic m any-body problem  onto an effective single­

im purity  problem  th a t has to  be solved self-consistently. For this purpose one describes the 

electronic properties of the  system  in term s of the  one particle G reen’s function G (E ), being 

the  solution of the  equation:

(E  — H  — E (E  ))G  =  1 , (4)

where E  is the  complex energy and the  effective self-energy operato r Ë is assum ed to  be a 

single-site quan tity  for site n :

E (E  ) =  £  |0ni>£ij (E  )<0nj | . (5)
ij

W ith in  D M FT, the  self-energy m atrix  E j  (E ) is a solution of the  m any-body problem  of 

an  im purity  placed in an  effective medium. This m edium  is described by the  so called bath 

G reen’s function m atrix  G defined as:

G- *(E ) =  G -1 (E ) +  E ij(E ) , (6)

where G j ( E ) is calculated as a projection of G (E ) onto the  im purity  site:

Gij (E  ) =  <0ni| G (E  )|0nj > . (7)
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As the  self-energy E j  ( E ) depends on the  bath G reen’s function G j (E ) the  D M FT  equa­

tions have to  be solved self-consistently. Accordingly, from a technical point of view the 

problem  can be split into two parts . One is dealing w ith the  solution of Eq. (4) and the 

second one is the  effective m any-body problem  to  find the  self-energy E j  (E ). W ith in  the 

present work, the  first task  is solved by the  K K R  band structu re  m ethod, as described below 

in Sec. II A . The details of solving the  m any-body effective im purity  problem  based on the 

fluctuation exchange (FLEX) approxim ation [28] will be presented in Sec. I I B .

A. T h e  K K R + D M F T  fo rm alism

In th is section we present an extension of the  well known K K R  equations in order to  

include th e  local, m ulti-orbital and  energy dependent self-energy produced by the  many- 

body solver (see section I IB ) . In the  fram ework of the  m ultiple scattering  form alism  the 

solution of Eq. (4) is constructed in two steps. For the  first step one has to  solve the  so 

called single-site scattering  problem , to  ob ta in  the  regular (Z ) and irregular solution ( J ) of 

the  corresponding Schrödinger (or in our case Lippmann-Schwinger) equations as well as a 

scattering  am plitude expressed in term s of the  single-site t-m atrix .

1. Solution of the single-site problem

The solution of the  single-site problem  can be worked out easily in the  same way as in 

the  full-potential description [30]. This way one finally gets th e  single-site t-m atrix  for the 

L D A +D M FT  case. In term s of the  wave functions the  single-site quasiparticle equation to  

be solved for each spin channel a reads

In th e  following we om it the  spin index a for the  m om ent keeping in m ind th a t for a spin- 

polarized system  described in a non-relativistic way one has to  solve Eq. (8) for each spin 

channel independently. For the  solution (f) one can s ta rt from the  ansatz:

[—V 2 +  (f) — E ]tf( f )  + Ea(f, f ', E ) ^ ( f ' ) d 3f  ' =  0.
/

(8)

(f) =  X > L * ( f )  , (9)
l
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where the  partia l waves ^ Lv (f) are chosen to  have the  same form as the  linearly independent 

solutions for the  spherically sym m etric potential:

^L v(f) =  ^L v (t)Yl (t) , (10)

w ith  L =  ( l ,ml) s tanding for the  angular m om entum  and m agnetic quan tum  num bers and 

YL(f) are spherical harm onics. Inserting the  ansatz (9) into the  single-site equation (8) 

and  in tegrating  over angle variables leads to  the  following set of the  coupled radial integro- 

differential equations:

cP l(i +  l) _ y ( r ) +  J  x ^ ( r,£ )  =  V  f  r * d r ,E LI/'(E)<f>l ( r ) M r ,) * L v ( r ' ,E )  , 
d f 2 f 2 J J

(11)

For a general non-diagonal self-energy a sim ilar rad ial equation (11) shall be w ritten  for 

the  left-hand side equation. If one makes a ra th e r n a tu ra l choice of the  localized subset of 

functions being ju s t 0 L(f) =  0 l (f)YL(f) (see below). In principle these equations can be 

solved by sum m ing a corresponding Born series. In this work, however, we simplified the 

equations tak ing  advantage of the  following special representation for the  self-energy:

d3f 'E ( f , f ' , E ) ^ L ( f ' , E ) =  ^ 2  ƒ d3f 'E l l ( E ) ^ L ( f ) ^ L ( f  ' ) ^ L ( f ' ,E )  «  ^  E L L (E )^ L (f, E )
l ^ l

(12)

This way the  Eq. (11) becomes a pure differential equation: 

d2 l(l +  1)
d r2 r 2 — V (f) +  E ^Lv ( f , E ) =  £  E l l '  (E ) ^L'v ( f , E ) . (13)

l

A fter having solved the  set of coupled equations for the  wave functions one gets the

corresponding single-site t-m atrix  by in troducing the  auxiliary m atrices a and  b [3]:

«Lv( E ) =  —ip f2[h -(p f), ^L (f)]r (14)

bLv(E) =  —ip f2[h+ (pf), ^L (f)]r •

L U" ^LV 7Jr

L(f)]r

Here p  =  is th e  m om entum , h^(pr)  are Hankel functions of the  first and  second kind 

and  [.. .]r denotes the  W ronskian. E valuating the  W ronskians a t W igner-Seitz radii f WS one 

finally has [3, 29]:

t (E)  = ^ ( a ( E ) - b ( E ) ) b - l ( E ) .  (15)
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The regular wave functions Z  used to  set up the  electronic G reen’s function w ithin the 

K KR-form alism  [24] are obtained  by a superposition of the  wave functions according to  

the  boundary  conditions a t r  =  r WS:

The irregular solutions J L needed in addition  are fixed by the  boundary  condition

and are obtained  ju s t by inw ard in tegration  w ith the  functions j L being the  spherical Bessel 

functions.

2. The multiple scattering Green’s function

Having constructed a set of regular (Z ) and  irregular ( J ) solutions of the  single-site 

problem  together w ith the  t-m atrix  the  corresponding expression for the  G reen’s function 

reads [24]:

Here the  superscript x is used to  distinguish between the  left and right hand solutions to

Z l (? ,E )  =  £  C L ( r )  ' = ï s J ]  j L '« E ) t ( E ) ¿ l - — ip h + K E )  , (16)
r=rws

J t( r - .E ) (17)

G (r„  +  jRn.r-m +  jRm.E )  =  £  Z ^ r ^ E ) ^ ,  ( E ) Z £ , ( C E )
L,L'

— {ZL(r „ , E ) J LX(r n ,E ) 0 ( r n — rn)
l

+  J l ( r „ .  E )Z l (?n. E )0 (r n -  o } ■ (18)

Eq. (8); i.e. for exam ple |Z  >  and  <  Z x | are solutions to  the  adjoint equations [31]:

(H  +  Ê — E  ) |Z ) =  0 

(Z  x |(H  +  è  — e  ) =  o ■

(19)

(20)

The central quantity  in Eq. (18) is the  scattering  p a th  operato r t which for the  case of a 

periodic crystal can be obtained  from  the  Brillouin zone (BZ) integration:

(21)
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where VBZ is the  volume of the  first Brillouin-zone and  w ith  i?ra(m) denoting

the la ttice  vector specifying the  position of the  unit cell n (m ) and the  m atrix  t -1 (E ) —G (k, E ) 

occurring in the  integral is known as the  K K R  m atrix . The m atrix  G(k, E ) is th e  Fourier 

transform  of the  real space K K R  struc tu re  constant m atrix  th a t depends only on the  relative 

positions of scatterers.

Given the  local na tu re  of the  m any-body solver used w ithin the D M FT  approach, the 

K K R  G reen’s function (18) has to  be pro jected  accordingly to  th e  m atrix  (see Eq. (7)). 

The projection is perform ed th rough  the  following integration:

C L L  (E  ) =  £  ( ƒ  d3r i 4 ( r i  ) Z ^  ( r i  , E  ) )  t^  (E  ) ( ƒ  d3^  ( r2, E  )0 l , ( r2) )

(À d3r1^L( r1)Z Li ( r1, E ^  J Li ( r2. E ) 0L  ( r2)

+  ƒ  ^ 2 ^  ƒ  dW L ( r1) J Li ( r 1 .E ) ^  Z LX1 ( r2. E ) 0L  ( r2) ) ■ (22)

The im purity  G reen’s function GL™ (E ) (actually GLL™( E ) for b o th  spin channels) repre­

sents the  inpu t into the  solution of the  effective im purity  problem  presented below. As the 

D M FT-approach (see next section) concentrates on the  correlation am ong electrons of the 

same angular m om entum  l only the  l — /-subblock of this m atrix  will be used in the  follow­

ing. For the  transition  m etal systems dealt here this implies th a t only the  d — d-subblock is 

considered w ith 0 L(r) being appropria te  reference wave functions w ith l =  2.

B. S o lu tion  o f th e  effective im p u rity  p ro b lem

O ur approach to  achieve a solution of the  m any-body effective im purity  problem  is based 

on the  fluctuation exchange (FLEX) approxim ation [28] bu t w ith  a different trea tm en t of 

particle-hole and particle-particle channels. The particle-particle channel is described by a 

T -m atrix  approach [32, 33] giving a renorm alization of the  effective in teraction, the  la tte r  

one being used explicitly in the  particle-hole channel [16, 34].

The sym m etrization of the  bare U m atrix  is done over particle-hole and  particle-particle

(J  d3r 2
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channels:

Umim3m2m4

Ummim3m2m4

2 Ui — Uimim2m4m3 -  mim2m3m4
Umi m m m
^ mi m2 m3 m4

Umi m3 m2 m4

Umi m3 m4 m2

è(f/' 
iw

+  Ui )mim3m2m4 mim3m4m2

m m m m Umi m m mmim3m2m4 -  mim3m4m2)

As indicated  above, here and in the  following only m atrix  elements w ith  respect to  the  d-like 

reference wave functions 0 L have to  be considered. The above expressions are the  m atrix  

elements of bare in teraction  which can be obtained  w ith the  help of the  pairwise operators 

corresponding to  different channels:

particle-hole density

d \ 2  —  7= (c1-j-C2-|' +  C1|C2j) (23)

particle-hole m agnetic

particle-partic le singlet

particle-partic le trip le t

m 12

m 12

^ ( c í ^ í  -  C^C2l)

m 12

c1|c2j

CUC2Î

(24)

S12 —  —J = { C I I C 2\  -  C l |C2j )

si2 = - ^ ( c j c j  -  c J4 r) (25)

12

t0t 12

t ±2 =  C1Î,IC2|,Î

^ 7 |( CUC2T +  C1TC2|) 

-^=(c+c+ +  c+ c+)

t±12 c+ c+ 
c1Î,|c2|,Î (26)

d

0

10



These operators describe the  correlated movement of the  electrons and  holes below and 

above the  Fermi level and play an im portan t role in defining the spin-dependent effective 

poten tials W ^ , / l2m3m4. The one-electron G reen’s function m atrix  containing the  m any-body 

in teraction, described by the  self-energy Emm/CT (¿wn) is given by the  Dyson equation

Gmm/a (iWn) =  (iwra +  ^ )^mm/ hmm/a ^m m / a (iwn ) (27)

where ß  is the  chemical potential, =  (2n +  1 )n /ß  are M atsubara frequencies and ß  =  1 /T  

is the  inverse tem peratu re. The G W  type of diagram s are sum m ed up self-consistently to  

produce the  self-energy. For getting  the  self-energy we use a tw o-step FLEX  approxim ation. 

This m eans th a t first of all the  bare m atrix  vertex is replaced by the  T -m atrix  approach 

[32, 33] which will be used in the  calculation of the  particle-hole channel. In the  K anam ori 

T -m atrix  approach the  sum  over the  ladder graphs m ay be carried out w ith  the  aid of the 

so called T -m atrix  which obeys the  Dyson-like integral equation:

<  13 IT™ / (i^ ) |2 4  >  =

<  13|t;124 > -  \  EE <  13|v|57 >  G06(¿w)Gra (ifi — M  <  68 | T / ( i^) | 24 >  .
ß  w 5678

The H artree and  Fock contribution are obtained  replacing the  bare in teraction by a T-matrix:

=  ¿ E E  <  13IT00 (¿Q) 124 >  Gl3(¿^ — ) (28)
ß  Q 340

e<2>m = EE <  14|TCTCT(¿Q)132 >  G34(¿n — ¿w) . (29)
ß  Q 34

In the  low-density lim it the  self-energy should be the  sum m ation over diagram s for repulsion 

of two holes below E F (ladder approxim ation). Going beyond the  low density lim it m eans 

the  inclusion of excitations of electrons from states below the  Fermi level into the  unoccupied 

p a rt of the  d band. This process renorm alizes the  hole sta tes below E F and  pu t new poles 

for the  G reen’s function.

Com bining the  density and  the  m agnetic p arts  of the  particle-hole channel we can write 

the  expression for the  in teraction p a rt of the  H am iltonian [16, 34]:

Hu  =  r ( D+ * * D  +  m + * V,^ * m~  +  m~  * * m + ) , (30)

where D  is a row m atrix  w ith elements (d, m 0), and  D + is a column m atrix  w ith elements 

(d+m +). We denote by * m atrix  m ultiplication w ith  respect to  the  pairs of orb ital indices.
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The expression for the effective potential is:

1 V dd V dm
v - " M  =  5  ,, (31)2 Vmd V mm

( V i ) 1234 =  <  13 |T n |42 >  . (32)

The m atrix  elements of the  effective in teraction  for z or longitudinal spin-fluctuations are:

1

2
Vdd = 13 |T™/ | 4 2 > - < 1 3 | T ctV/ | 4 2 > )

(7 cr
1vdm = Vmd = -  13|T°'°'|42 >  -  <  13 |TCTCT|24 >  +  <  13|TctV|42 > )

(7(7 '

Vmm = \  Y . ì5 2 (T(T' < 13|Tctct/| 4 2 > - < 1 3 | T ctV/ | 4 2 > ) .
a  a  '

For finite tem pera tu re  the  definition for the  spin dependent G reen’s function is:

G1 2( t )  =  — <  Tt c1a ( t ) C+t (0 ) >  

f ß ■
G ^ * ^  ) = eiWnT G12 (T)dT.

0

The corresponding expressions for the  generalized longitudinal x S and transversal x ± sus­

ceptibilities are:

x x (¿w) =  [1 +  Vi r Î i ( *w) ] - 1  * r Î i ( *w) (33)

x y(iw) =  [1 +  V 11 * xS ( i w ) ] - 1  * x 0 (iw) . (34)

where r ( iw ) represent the  Fourier transform  of the  em pty loop:

r mim2m3»4 ( t)  Gm2m3 (t)G m4mi ( T) (35)

and the  m atrix  of the  bare longitudinal susceptibility is:

,, 1 Í  r Î Î  +  r ^  -  r u  \
*»(<w) =  2 [  r n  _ r u  rtt + m  J ' (36)

The four m atrix  elements of the  bare longitudinal susceptibility represent the  density- 

density (dd), density-m agnetic (dm 0), m agnetic-density (m 0d) and m agnetic-m agnetic chan­

nels (m 0m 0). The m atrix  elements couple longitudinal m agnetic fluctuations w ith  density 

m agnetic fluctuations. In this case the  particle hole contribution to  the  self-energy is:

s S V ) =  X  W S 2 (t )G34'(t ) .  (37)
34a '

12



with the particle-hole fluctuation potential m atrix

W aa / (iw )
W î î  W î  

WiÎ Wu
(38)

and the  spin-dependent effective potentials defined as:

(39)

The definitions for x S and x S differ from  those of x S and  x0 , respectively, by the  replacem ent 

r ÎÎ ^  r jj in Eq. (36). The com plete expression for the  self-energy is finally given by:

The a ttrac tive  feature of the  present approach is th a t it leads to  an  exact expression 

for the  self-energy in the  lim it of a small num ber of holes in the  d band. These conditions 

are satisfied w ith  high accuracy in the  case of Ni. Further details and justifications of this 

approach can be found in Ref. 34.

C . T re a tm e n t o f d iso rd e red  alloys

In this section we review the  KK R-CPA  approach and  present a simple and  tran sp a r­

ent electronic theory  th a t combines the  trea tm en t of disorder and  correlation on the  same 

footing. A fter several decades of intense research the  problem  of in teracting  electrons in dis­

ordered alloys still induce num erous investigations b o th  experim entally and theoretically. In 

the  weakly disordered lim it [35] b o th  disorder and  in teraction  can be trea ted  in a pertu rba- 

tive way; note th a t th is pertu rb a tio n  theory  is not trivial, in particu lar, a non-Ferm i-liquid 

behaviour appears. For strong disorder A nderson localization effects eventually lead to  the 

breakdow n of the  m etallic phase and a m etal-to-insu lator transition  takes place (for a re­

view, see Ref. 36). It was realized recently th a t the  H ubbard  m odel can be solved exactly 

in the  lim it of infinite space dim ensionality d =  to and  in this case the  M ott m etal-insulator

E =  E (th ) +  E ( tf )  +  E (ph) . (40)
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transition  can be described in the  fram ework of dynam ical mean-field theory  (for a review, 

see Ref. 4). The presence of disorder in d =  to increases the  com plexity of the  problem: the 

cavity field varies from site to  site reflecting the  random  environm ents in which a given site 

is em bedded [37]. Fortunately, for d =  to the  problem  can be simplified due to  a (infinitely) 

large num ber of neighbours, in th is case the  cavity fields become independent of disorder 

and  only local disorder fluctuations survive. We will adopt th is approach which is flexible 

enough to  allow for study num erous interesting questions in connection w ith an interplay 

between correlations and local disorder [38]. Furtherm ore it is supported  by the  argum ents 

given by Drchal et al. [5]. These au thors pointed out th a t an  averaged coherent po ten ­

tia l for disordered in teracting  systems can be constructed  using the  so-called term inal-point 

approxim ation. Using a local mean-field approxim ation to  tre a t electron correlations, the 

corresponding self-energy gets diagonal in the  site representation. This allows to  use the 

coherent po ten tial alloy theory  (CPA) [38] for the  configurational averaging in the  usual 

way.

Among the  electronic structu re  theories, those based on the  m ultiple scattering  formalism 

are the  m ost suitable to  deal w ith disordered alloys w ithin the  coherent po ten tial approxim a­

tion  (CPA). CPA is considered to  be the  best theory  am ong the  so-called single-site (local) 

alloy theories th a t assume com plete random  disorder and  ignore short-range order [3]. Com­

bining the  CPA w ith  m ultiple scattering  theory leads to  the  KK R-CPA  scheme, which is 

applied nowadays extensively for quan tita tive investigations of the  electronic s truc tu re  and 

properties of disordered alloys [3, 39]. W ith in  the  CPA the  configurationally averaged prop­

erties of a disordered alloy are represented by a hypothetical ordered CPA-m edium , which 

in tu rn  may be described by a corresponding site-diagonal (n =  m ) scattering  p a th  operator 

tcpa . The corresponding single-site t-m atrix  t CPA and m ultiple scattering  p a th  operator 

t cpa are determ ined by the  so called CPA-condition:

xata +  xbt b =  t cpa . (41)

Here a b inary  system  AxB 1-x com posed of com ponents A and  B w ith  relative concentrations 

xA and x B is considered. The above equation represents the  requirem ent th a t em bedding 

substitu tionally  an  atom  (of type A or B) into the  CPA m edium  should not cause additional 

scattering. The scattering  properties of an A atom  em bedded in the  CPA m edium , are
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represented by the  site-diagonal (n =  m ) com ponent-projected scattering  p a th  operato r t a

tA =  t cpa [1 +  (t-1 -  t —Pa ) t cpa] -1 , (42)

where t A and t CPA are the  single-site m atrices of the  A com ponent and  of the  CPA effective 

m edium. A corresponding equation holds also for the  B com ponent in the  CPA medium. 

The coupled sets of equations for t cpa and  t CPA have to  be solved iteratively w ithin the 

CPA cycle.

It is obvious th a t the  above scheme can straightforw ardly be extended to  include the 

m any-body correlation effects for disordered alloys. As was pointed out in Sec. II A , w ithin 

the  K K R + D M F T  approach the  local m ulti-orbital and energy dependent self-energy (S A (E ) 

and  ( E )) is directly included in the  single-site m atrices t A and t B, respectively. Having 

solved the  CPA equations self-consistently, one has to  project th e  CPA G reen’s function 

onto the  com ponents A and  B  by using Eqs. (22) and  (42). In Eq. (22) the  m ultiple 

scattering  p a th  operato r tLl  (E ) has to  be replaced by the  com ponent-projected scattering 

p a th  operato r t^ /  of an  A -atom  in a CPA medium. The com ponents G reen’s functions 

are used to  construct the  corresponding b a th  G reen’s functions for which the  D M FT 

self-consistency condition is used according to  Eq. (6):

6 - Af l (E) =  G - V b (E ) +  £ >=.4,b (E ) . (43)

The m any-body solver presented in section IIB  in tu rn  is used to  produce the  com ponent 

specific self-energies B (E ):

(E ) =  Si=A,B(E)[Gi=A,B(E)] . (44)

D. T h e  se lf-consistency  cycle

Finally a description of the  flow diagram  of the  self-consistent L D A +D M FT  approach 

is presented in Fig. (1). The radial equation Eq. 11 provides the  set of regular (Z ) and 

( J ) irregular solutions of the  single-site problem . Together w ith the  t  m atrix , the  scattering 

p a th  operato r t E q .(21) and  the  K K R  G reen’s function is constructed  Eq. 18. To solve the 

m any-body problem  the  a projected im purity  G reen’s function is constructed  according to  

Eq. 22. The LDA G reen’s function GLL (E ) is calculated on the  complex contour which 

encloses the  valence band  one-electron energy poles. The Pade analytical continuation is
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used to  m ap the  complex local G reen’s function G2¿/ (E ) on the  M atsubara axis which is used 

when dealing w ith  the  m any-body problem . In the  current im plem entation the  pertu rba tive  

SPT F  (spin-polarized T -m atrix  +  FLEX ) solver of the  D M FT  problem  described above 

is used. In fact any D M FT  solver could be included which supplies the  self-energy E(w) 

as a solution of the  m any-body problem . The Pade analytical continuation is used once 

more to  m ap back the  self-energy from the  M atsubara  axis to  the  complex plane, where 

the  new local G reen’s function is calculated. As was described in th e  previous sections, 

the  key role is played by the  scattering  p a th  operato r t^ L  ( E ), which allows us to  calculate 

the  charge a t each SCF itera tion  and the  new potentials th a t are used to  generate the  new 

LDA G reen’s function. In practice it tu rn s out th a t the  self-energy converges faster th a n  

the  charge density. Of course double counting corrections have to  be considered explicitly 

when calculating the  to ta l energy (not done here). Concerning the  self-energy used here the 

double counting corrections are included when solving the  m any-body problem  (see Ref. 34).

I I I .  R E SU L T S A N D  D IS C U S S IO N

To dem onstrate the  capability of our approach we first applied it to  the  3d m etals Ni 

and  Fe. A lthough these m etals are more or less adequately described in the  framework of 

s tandard  LDA, nevertheless, there are some features in the  experim ental properties which 

are due to  correlation effects th a t are not adequately described on th is basis. In addition, 

there are num erous investigations in the  litera tu re  th a t seek for an  im proved description of 

correlation effects in these systems and th a t can be com pared with.

A. N u m erica l d e ta ils

The self-consistent L D A +D M FT  calculations were carried out for the  experim ental 

ground s ta te  crystal structures, i.e. fcc for Ni, bcc for Fe and  fcc for Ni rich FexN i1-x 

alloys. The la ttice  param eters were fixed a t the  experim ental values (Fe: 5.406 a.u., Ni: 

6.658 a.u., for FexN i1-x: see Ref.40). The G reen’s function was calculated for 32 energy 

points d istribu ted  over sem icircular contour. The Brillouin zone in tegration has been per­

form ed on a uniform  grid, tak ing  into account the  sym m etry of the  system. As a suitable 

reference wave functions 0 L(r — R ) we have choosen a radial solution of the  Schrödinger
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equation for the  spherically sym m etric LDA non-m agnetic potential, th a t is determ ined for 

an  appropria te  energy (E = 0.7  Ry). The D M FT  param eters, average Coulomb in teraction 

U , exchange energy J , and  tem pera tu re  T  used in th e  calculations are listed in Table I .

B. R esu lts  for bcc-Fe an d  fcc-N i

To dem onstrate the  applicability of the  scheme presented above band-structu re  calcula­

tions for bcc-Fe and fcc-Ni have been perform ed. The results of L D A +D M FT  calculation for 

b o th  systems have been already several tim es discussed in detail in the  litera tu re  [5, 12, 41].

The density of sta tes curves resulting from a plain LDA and a L D A +D M FT  calculations 

are shown in Figs. 2 and  3 for Fe and Ni, respectively. For the  L D A +D M FT  calculations 

we used the  D M FT  param eters as given in Table I . The density of sta tes curves for Fe 

and  Ni are in reasonable agreem ent w ith corresponding previous L M T O + D M F T  [5], as well 

as E M T O + D M F T  [12] calculations. The same is true  also for the  spin m agnetic m om ents 

(see Table I ) . The spin m agnetic m om ents are some w hat higher in com parison w ith the 

E M T O + D M F T  resu lts .[12] From Figs.2 and  3 one can see th a t in bcc-Fe the  correlation 

effects are much less pronounced th a n  in fcc-Ni. This is due to  the  large exchange splitting 

for Fe and the  bcc-structure dip in the  m inority density of sta tes [41]. In the  case of Ni 

the  L D A +D M FT  calculations account for all expected influences of the  density of sta tes in 

satisfying way. As can be seen from  Fig. 3, the  density of states reflects all th ree m ain corre­

lation  effects: the  30% narrow ing of the  occupied p a rt of the  d-band, about 40% decrease of 

exchange sp litting  and the  presence of the  famous 6eV satellite com pared to  the  LDA DOS. 

However, the  position of the  6eV satte lite  is shifted som ewhat to  lower binding energies. 

This shift and  the  large broadening of the  resonance is due to  the  p ertu rb a tio n  approach of 

the  D M FT  solver of the  effective im purity  problem  used here .[34]

C. R e su lts  for fcc-FexN i1-x d iso rd e red  alloy

As m entioned above, the  scheme presented here allows in a straight forw ard way to  deal 

w ith  disordered alloys. To dem onstrate how this works we carried out a set of LDA as well 

as L D A +D M FT  calculations for fcc-FexN i1-x disordered alloy for various concentrations. 

For the  L D A +D M FT  we used the  same D M FT  param eters (U, J and  T) as in th e  case of
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pure bcc-Fe and  fcc-Ni (see Table I ) . In Fig. 4 the  element resolved as well as the  to ta l spin 

m agnetic m om ents are shown. A lthough the  difference between LDA and L D A +D M FT  

m om ents for Fe is ra th e r small one can see an  in teresting trend. In contrast to  the  pure 

bcc-Fe case the  L D A +D M FT  m om ents for Fe in fcc-FexN i1-x alloy are slightly larger th a n  

corresponding LDA ones. In the  case of Ni, on the  o ther hand, a decrease of th e  m agnetic 

m om ent was obtained  as in the  case of pure fcc-Ni (see Table I ) . Com paring the  average 

m om ents in Fig. 4 w ith experim ent [40] one finds ra th e r good agreem ent already for LDA- 

based spin m om ent. In spite of its present lim itations, the  L D A +D M FT  scheme does not 

spoil the  overall behaviour for the  concentration dependence of m agnetic moments.

Finally, in Fig. 5 the  resulting concentration dependence of the  self-energy is shown. 

We present the  results for the  real p a rt of the  self-energies for Fe and Ni atom s for the 

t 2g sym m etry (the results for the  eg sym m etry are similar and  hence not p lo tted). It is 

in teresting to  note th a t the  slope of the  self-energy near Fermi level Z  =  ^ \ e = e f  which 

defines the  mass renorm alisation and leads to  the  narrow ing of the  band  practically  does not 

depend on the  concentration. On the  o ther hand, for the  high energy p a rt of the  self-energy 

one sees ra th e r noticeable differences giving raise to  the  changes in the  sa tte lite  structure.

IV . SU M M A R Y

A scheme has been presented th a t allows to  combine the  K K R  band struc tu re  m ethod 

and  the  L D A +D M FT  approach to  deal w ith correlated systems. Its applicability has been 

dem onstrated  by results for ferrom agnetic bcc-Fe and fcc-Ni. For th is systems a good 

agreem ent w ith previous L D A +D M FT  m ethods has been found. In addition we combined 

L D A +D M FT  scheme w ith  the  CPA to  deal w ith  disordered alloy. As an  exam ple we pre­

sented results for fcc-FexN i1-x disordered alloy.
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FIG. 1: The complex energy contours used within the selfconsistent LDA+DMFT approach, com­

bined with the KKR formalism. The solution of the radial equation allows the evalaution of the 

single site scattering matrix t(E ) and the scattering path operator (E ) from which the KKR 

Green function is constructed. The projection of the Green function is perfomed according to 

Eq. (22). The impurity Green function is then used to solve the many-body problem within the 

spin polarized T-m atrix FLEX solver of the DMFT approach.
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FIG. 2: Spin resolved density of states of bcc-Fe as calculated within LDA(dashed line) and 

LDA+DMFT (full line) using the KKR-method. (DMFT parameters: U=2eV, J=0.9eV, T=400K)

TABLE I: The DMFT parameters average Coulomb interaction U, exchange energy J and tem­

perature T used in the calculations for bcc-Fe, fcc-Ni and fcc-FesoNi50. In addition the theoretical 

spin magnetic moments as calculated by the LDA and the LDA+DMFT methods are shown for 

bcc-Fe and fcc-Ni. Magnetic moments for fcc-FexNi1-x alloy are presented in Fig. 4

U(eV) J(eV) T(K) ^pin(VB)) ..DMFT (,. Pspin \ßB))

bcc-Fe 2.0 0.9 400 2.29 2.28

fcc-Ni 3.0 0.9 400 0.59 0.57

Fe in EexN ii_x 2.0 0.9 400

Ni in EexN ii_x 3.0 0.9 400
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