72 research outputs found

    CCND1 (B-cell leukemia/lymphoma 1)

    Get PDF
    Review on CCND1, with data on DNA, on the protein encoded, and where the gene is implicated

    CHEMOTHERAPEUTIC POTENTIAL OF NOVEL XANTHONE SOURCED FROM SWERTIA CHIRATA AGAINST SKIN CARCINOGENESIS

    Get PDF
    Objective: Swertia chirata forms a rich source of bio-active compounds, among which xanthones form an important part. Among the xanthones present in it, 1,5,8 Tri-hydroxy-3-methoxy xanthone (TMX) was found to be the most active. The present study aims to evaluate the chemotherapeutic potential of it against metastatic skin cancer cell lines. Methods: In this study, the antitumor activity of TMX (the active component of chirata plant) was evaluated in A431, SKMEL-5, and A375 cell line by using in-vitro assays such as cell viability assay, cell cycle analysis, caspase 3 activity assay, intracellular reactive oxygen species (ROS) level determination by dichlorofluorescein diacetate, and quantitative real-time polymerase chain reaction (qRT-PCR). Results: In vitro studies showed that TMX from S. chirata exhibited significant antitumor activity by inducing apoptosis and restricting proliferation in both melanoma and non-melanoma skin cancer cell lines, but no such activity was seen in normal skin cancer cell line WS1. The qRT-PCR analysis revealed that in both the melanoma ad non-melanoma cell lines, TMX could exert its antitumor activity by downregulating c-Myc, cyclin-D1, and β-catenin and up-regulating Wnt antagonist gsk-3β, thereby suppressing wnt self-renewal pathway, but such regulation was absent in normal cell line. Conclusions: TMX from chirata could effectively inhibit the proliferation of metastatic skin cancer (both melanoma and non-melanoma) cell lines while being non-toxic to normal cell lines. The chemotherapeutic potential of TMX against metastatic skin cancer cell lines was achieved by downregulating several key regulatory genes enabling the suppression of the self-renewal pathway, the chief reason behind the invasiveness of cancer cells

    Alterations in candidate genes PHF2, FANCC, PTCH1 and XPA at chromosomal 9q22.3 region: Pathological significance in early- and late-onset breast carcinoma

    Get PDF
    Introduction: Younger women with breast carcinoma (BC) exhibits more aggressive pathologic features compared to older women; young age could be an independent predictor of adverse prognosis. To find any existing differences in the molecular pathogenesis of BC in both younger and older women, alterations at chromosomal (chr.) 9q22.32-22.33 region were studied owing to its association in wide variety of tumors. Present work focuses on comparative analysis of alterations of four candidate genes; PHF2, FANCC, PTCH1 and XPA located within 4.4 Mb region of the afore-said locus in two age groups of BC, as well as the interrelation and prognostic significance of alterations of these genes. Methods: Deletion analysis of PHF2, FANCC, PTCH1 and XPA were examined in a subset of 47 early-onset (group-A: ≤ 40 years) and 59 late-onset (group-B: > 40 years) breast carcinomas using both microsatellite and exonic markers. Methylation Sensitive Restriction analysis (MSRA) was done to check for promoter methylation. Quantitative real-time polymerase chain reaction (Q-PCR) and immunohistochemisty (IHC) was done in some genes to see their relative mRNA and protein expressions respectively. Clinico-pathological correlation of different parameters as well as patient survival was calculated using different statistical softwares like EpiInfo 6.04b, SPSS 10.0 etc. Results: Either age group exhibited high frequency of overall alterations in PHF2, FANCC and PTCH1 compared to XPA. Samples with alteration (deletion/methylation) in these genes showed reduced level of mRNA expression as seen by Q-PCR. Immunohistochemical analysis of FANCC and PTCH1 also supported this observation. Poor patient survival was noted in both age groups having alterations in FANCC. Similar result was also seen with PTCH1 and XPA alterations in group-A and PHF2 alterations in group-B. This reflected their roles as prognostic tools in the respective groups in which they were altered. Conclusion: Overall alterations of PHF2, FANCC and PTCH1 were comparatively higher than XPA. Differential association of alterations in FANCC and PTCH1 with that of PHF2, XPA and two breast cancer susceptibility genes (BRCA1/BRCA2) in the two age groups suggests differences in their molecular pathogenesis and dysregulation of multiple DNA repair pathways as well as hedgehog dependent stem cell renewal pathway

    Skin mediated human papillomavirus infection in breast: A report of four cases

    Get PDF
    To address the ambiguity of different modes of human papillomavirus (HPV) transmission in breast, the immunohistochemical expression of two oncoproteins E6/E7 of HPV16 was analyzed in primary breast cancer (BC) and adjacent normal skin of 4 samples. The patients were of 35–55 years old having no previous history of cancer. The E6/E7 expressions were evident in both skin and BC. In skin, high/moderate cytoplasmic expressions of E6/E7 proteins were seen in all samples, whereas in BC, high/moderate cytoplasmic expressions of the proteins were observed in 2–3 samples. Thus, it seems that HPV infection in the breast may occur through the skin

    Inhibition of nucleoporin member Nup214 expression by miR-133b perturbs mitotic timing and leads to cell death

    Get PDF
    Background: Nucleoporins mediate nucleocytoplasmic exchange of macromolecules and several have been assigned active mitotic functions. Nucleoporins can participate in various mitotic functions like spindle assembly, kinetochore organisation and chromosome segregation- important for genome integrity. Pathways to genome integrity are frequently deregulated in cancer and many are regulated in part by microRNAs. Indeed, altered levels of numerous microRNAs have frequently been associated with tumorigenesis. Here, we unveil a microRNA-mediated regulation of the nucleoporin Nup214 and its downstream effect on genome integrity. Methods: Databases/bioinformatic tools such as miRBase, Oncomine and RNAhybrid predicted Nup214 as a miR-133b target. To validate this, we used luciferase reporter assays, Real-Time PCR and immuno-blotting. Flow cytometry and immuno-blots of mitotic markers were used to analyse cell cycle pattern upon thymidine synchronization and miR-133b treatment. Mitotic indices and chromosomal abnormalities were assessed by immuno-fluorescence for FITC-tagged phospho-H3 as well as video-microscopy for GFP-tagged histone H4. Annexin V/propidium iodide staining, caspase3/ PARP cleavage and colony formation assays were done to investigate cell death upon either miR-133b transfection or NUP214 knockdown by siRNA. UPCI:SCC084, HCT116, HeLa-H4-pEGFP and HEK293 (human oral squamous cell carcinoma, colorectal, cervical carcinomas and embryonic kidney cell lines, respectively) were used. miR-133b and NUP214 expressions were validated in cancer cell lines and tissues by Real-Time PCR. Results: Examination of head and neck tumour tissues and cancer cell lines revealed that Nup214 and miR-133b expressions are negatively correlated. In vitro, Nup214 was significantly downregulated by ectopic miR-133b. This downregulation elevated mitotic indices and delayed degradation of mitotic marker proteins cyclinB1 and cyclinA and dephosphorylation of H3. Moreover, this mitotic delay enhanced chromosomal abnormalities and apoptosis. Conclusions: We have identified NUP214, a member of the massive nuclear pore complex, as a novel miR-133b target. Thus, we have shown a hitherto unknown microRNA regulation of mitosis mediated by a member of the nucleoporin family. Based on observations, we also raise some hypotheses regarding transport-dependent/independent functions of Nup214 in this study. Our results hence attempt to explain why miR-133b is generally downregulated in tumours and lay out the potential for Nup214 as a therapeutic target in the treatment of cancer

    Deregulation of LIMD1-VHL-HIF-1α-VEGF pathway is associated with different stages of cervical cancer.

    Get PDF
    To understand the mechanism of cellular stress in basal-parabasal layers of normal cervical epithelium and during different stages of cervical carcinoma, we analyzed the alterations (expression/methylation/copy number variation/mutation) of HIF-1α and its associated genes LIMD1, VHL and VEGF in disease-free normal cervix (n = 9), adjacent normal cervix of tumors (n = 70), cervical intraepithelial neoplasia (CIN; n = 32), cancer of uterine cervix (CACX; n = 174) samples and two CACX cell lines. In basal-parabasal layers of normal cervical epithelium, LIMD1 showed high protein expression, while low protein expression of VHL was concordant with high expression of HIF-1α and VEGF irrespective of HPV-16 (human papillomavirus 16) infection. This was in concordance with the low promoter methylation of LIMD1 and high in VHL in the basal-parabasal layers of normal cervix. LIMD1 expression was significantly reduced while VHL expression was unchanged during different stages of cervical carcinoma. This was in concordance with their frequent methylation during different stages of this tumor. In different stages of cervical carcinoma, the expression pattern of HIF-1α and VEGF was high as seen in basal-parabasal layers and inversely correlated with the expression of LIMD1 and VHL. This was validated by demethylation experiments using 5-aza-2'-deoxycytidine in CACX cell lines. Additional deletion of LIMD1 and VHL in CIN/CACX provided an additional growth advantage during cervical carcinogenesis through reduced expression of genes and associated with poor prognosis of patients. Our data showed that overexpression of HIF-1α and its target gene VEGF in the basal-parabasal layers of normal cervix was due to frequent inactivation of VHL by its promoter methylation. This profile was maintained during different stages of cervical carcinoma with additional methylation/deletion of VHL and LIMD1.This work was supported by CSIR (Council of Scientific and Industrial Research, Government of India)-JRF/NET grant [File No.09/030(0059)/2010-EMR-I] to Mr. C.Chakraborty, grant [Sr. No. 2121130723] from UGC (University Grants Commission, Government of India) to Mr. Sudip Samadder, grant [SR/SO/HS-116/2007] from DST (Department of Science and Technology, Government of India) to Dr. C. K. Panda and grant [ No. 60(0111)/14/EMR-II of dt.03/11/2014] from CSIR (Council of Scientific and Industrial Research, Government of India) to Dr. C. K. Pand

    Understanding the Role of LIM domain-containing protein 1 in Oral Carcinoma

    No full text
    <p>The aim of our study was to analyze the alterations in a candidate tumor suppressor gene (TSGs) LIM domains-containing protein 1 (LIMD1) which is encoded at chromosome 3p21.3, a region commonly deleted in many solid malignancies. However, the function of LIMD1 is unknown. In the current study, we analyze 38, tumor and adjacent normal samples for mutational screening and 46 samples for Immunohistochemistry expression analysis for LIMD1 protein. We found a synonymous, heterozygous mutation on NCBI ref SNPs viz. rs267236 and rs267237 on exon – 1. Whereas it was also observed that with increased in tumor grade the expression of LIMD1 protein got down regulated. LIMD1 Overall percentage alteration ragging from 50% in mild dysplastic lesion to 77% in stage III+IV carcinoma. With the mutation observed we can indicate some co-relation of these SNPs with the development of Oral Cancer. As it may have some role in the pre-mRNA formation which later affect the translational activities and LIMD1 protein formation, which leads to the down regulation of the protein in tumor samples. Down regulation of the protein in carcinoma samples suggest its role as tumor suppressor gene, and loss of which promote carcinogenesis.</p

    Tobacco-induced carcinogenesis and chemoprevention by some natural products

    No full text
    Tobacco habit is one of the main etiological factors responsible for cancer in body's multiple organs due to the presence of numerous carcinogens. In different animal models, it was evident that the carcinogens could induce carcinogenesis in multiple organs depending on its route of exposure site (e.g., skin, oral cavity, and lung), metabolism (e.g., liver and lung), and excretion (e.g., lung and kidney). It was evident that the active carcinogen metabolites could induce cellular reactive oxygen species (ROS) level, bind to DNA/RNA/proteins, thereby transforming the stem cell of the specific organs toward neoplasm. Different epidemiological studies including our own showed few natural compounds might reduce the risk of tobacco-induced carcinogenesis. The anticarcinogenic roles of crude extract as well as active compounds of such natural dietary ingredients were also evaluated by several in vivo animal models. Most of the active components have potential antioxidative, anti-inflammatory, and anticarcinogenic roles. For better understanding, the roles of three different types of compounds were selected for this review 1. Tea polyphenols from Camellia sinensis: epigallocatechin gallate and theaflavin; 2. amarogentin from Swertia chirata; and 3. Eugenol from Syzygium aromaticum. Studies showed that three types of compounds could restrict the carcinogenesis in different organs at premalignant stages. This might be due to antioxidation and activation of detoxification system, inhibition of cancer initiating stem cell population, modulation of multiple cellular pathways associated with cell cycle, cell proliferation, and survival which ultimately lead to restrict tumor development at initiation/promotion stage

    Molecular study of clonality in multifocal and bilateral breast tumors

    No full text
    The clonal origin of multiple tumors in the same individual has long been debated. The main aim of this study is to find out whether multiple tumors in same individuals originated from a single clone. In our previous work (Pathol. Res. Pract. 199 (2003) 313-321), the deletion at chromosome1p36 was found to occur early because of common allelic loss in the bilateral tumors. In order to further investigate the findings about the clonality of tumors, eight tumors from four patients (two synchronous bilateral breast carcinoma [biBC], one case with breast carcinoma in one breast and multiple calcified fibroadenoma nodules in another breast, and one case with multifocal fibroadenosis in one breast) were subjected to polymerase chain reaction (PCR) to detect (a) loss of heterozygosity (LOH) and microsatellite size alterations (MA) using microsatellite markers distributed over five chromosomal arms 11p/q, 13q and 17p/q, and (b) Cyclin D1 amplification. Some markers were intragenic for BRCA1, BRCA2, BRCAX, ATM, TP53, and RB1. Although a few cases were studied, our findings suggest that in at least a proportion of patients multiple tumors may arise from a single clone

    Differential activation of NOTCH1 pathway in HNSCC cell lines of different anatomical sites

    No full text
    244-251Head and neck squamous cell carcinoma (HNSCC) is one of the most frequent types of cancers, and the role of NOTCH1 pathway during development of HNSCC is debatable. Here, we have made an attempt to evaluate the NOTCH1 pathway status in HNSCC cell lines from different anatomical subsites. At first, mRNA expression status of NOTCH1 pathway associated genes (NOTCH1/JAG1/JAG2/HES1/HEY1/CD44/FBXW7/HIF1α/VEGF) was analysed in two HNSCC cell lines: FaDu (hypopharyngeal carcinoma) and SCC9 (tongue carcinoma) and was compared with publicly available database. Then, molecular profiling (RNA/protein) of the genes and cell cycle phase distribution analysis were done after DAPT (γ-secretase inhibitor) administration at different concentrations on the cell lines to see the differential effect, if any. High NOTCH1 pathway activation was noted in FaDu cell line than the SCC9. In cytotoxicity assay with DAPT, FaDu showed more sensitivity than SCC9. Therefore, gradual decline of the expression of NOTCH1 pathway associated genes was noted in FaDu with the increasing DAPT concentrations, leading to high S/G2-M arrest of the cell population. Contrastingly, SCC9 showed significant reduced expression of the genes at higher concentration of DAPT with comparatively low S/G2-M arrest of the cell population. The study demonstrates distinct NOTCH1 pathway signature in the HNSCC cell lines of specific sub-sites of head and neck
    • …
    corecore