526 research outputs found

    The broad-line region and dust torus size of the Seyfert 1 galaxy PGC50427

    Full text link
    We present the results of a three years monitoring campaigns of the z=0.024z = 0.024 type-1 active galactic nucleus (AGN) PGC50427. Through the use of Photometric Reverberation Mapping with broad and narrow band filters, we determine the size of the broad-line emitting region by measuring the time delay between the variability of the continuum and the Hα\alpha emission line. The Hα\alpha emission line responds to blue continuum variations with an average rest frame lag of 19.0±1.2319.0 \pm 1.23 days. Using single epoch spectroscopy we determined a broad-line Hα\alpha velocity width of 1020 km s1^{-1} and in combination with the rest frame lag and adoption a geometric scaling factor f=5.5f = 5.5, we calculate a black hole mass of MBH17×106MM_{BH} \sim 17 \times 10^{6} M_{\odot}. Using the flux variation gradient method, we separate the host galaxy contribution from that of the AGN to calculate the rest frame 5100\AA~ luminosity at the time of our monitoring campaign. The rest frame lag and the host-subtracted luminosity permit us to derive the position of PGC50427 in the BLR size -- AGN luminosity diagram, which is remarkably close to the theoretically expected relation of RL0.5R \propto L^{0.5}. The simultaneous optical and NIR (JJ and KsK_{s}) observations allow us to determine the size of the dust torus through the use of dust reverberation mapping method. We find that the hot dust emission (1800K\sim 1800K) lags the optical variations with an average rest frame lag of 46.2±2.6046.2 \pm 2.60 days. The dust reverberation radius and the nuclear NIR luminosity permit us to derive the position of PGC50427 on the known τMV\tau - M{V} diagram. The simultaneus observations for the broad-line region and dust thermal emission demonstrate that the innermost dust torus is located outside the BLR in PGC50427, supporting the unified scheme for AGNs. (Abstract shortened, see the manuscript.)Comment: 11 pages, 23 figures, accepted for publication in Astronomy and Astrophysic

    High Mass Star Formation. II. The Mass Function of Submillimeter Clumps in M17

    Full text link
    We have mapped an approximately 5.5 by 5.5 pc portion of the M17 massive star-forming region in both 850 and 450 micron dust continuum emission using the Submillimeter Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope (JCMT). The maps reveal more than 100 dusty clumps with deconvolved linear sizes of 0.05--0.2 pc and masses of 0.8--120 solar masses, most of which are not associated with known mid-infrared point sources. Fitting the clump mass function with a double power law gives a mean power law exponent of alpha_high = -2.4 +/- 0.3 for the high-mass power law, consistent with the exponent of the Salpeter stellar mass function. We show that a lognormal clump mass distribution with a peak at about 4 solar masses produces as good a fit to the clump mass function as does a double power law. This 4 solar mass peak mass is well above the peak masses of both the stellar initial mass function and the mass function of clumps in low-mass star-forming regions. Despite the difference in intrinsic mass scale, the shape of the M17 clump mass function appears to be consistent with the shape of the core mass function in low-mass star-forming regions. Thus, we suggest that the clump mass function in high-mass star-forming regions may be a scaled-up version of that in low-mass regions, instead of its extension to higher masses.Comment: 33 pages, 6 figures, 3 tables. Accepted for publication in the Astrophysical Journa

    The Physical Conditions for Massive Star Formation: Dust Continuum Maps and Modeling

    Full text link
    Fifty-one dense cores associated with water masers were mapped at 350 micron. These cores are very luminous, 10^3 < Lbol/Lsun < 10^6, indicative of the formation of massive stars. Dust continuum contour maps and photometry are presented for these sources. The spectral energy distributions and normalized radial profiles of dust continuum emission were modeled for 31 sources using a one-dimensional dust radiative transfer code, assuming a power law density distribution in the envelope, n = n_f (r/r_f)^{-p}. The best fit density power law exponent, p, ranged from 0.75 to 2.5 with = 1.8 +/- 0.4. The mean value of p is comparable to that found in regions forming only low mass stars. The mean p is incompatible with a logatropic sphere (p = 1), but other star formation models cannot be ruled out. Different mass estimates are compared and mean masses of gas and dust are reported within a half-power radius determined from the dust emission and within a radius where the total density exceeds 10^4 cm^3. Evolutionary indicators commonly used for low mass star formation may have some utility for regions forming massive stars. For comparison with extragalactic star formation studies, the luminosity to dust mass ratio is calculated for these sources with a method most parallel to that used in studies of distant galaxies and is found to be similar to that seen in high redshift starburst galaxies.Comment: 45 pages, 20 figures, accepted to ApJ Supplemen

    Freshly Formed Dust in the Cassiopeia A Supernova Remnant as Revealed by the Spitzer Space Telescope

    Get PDF
    We performed Spitzer Infrared Spectrograph mapping observations covering nearly the entire extent of the Cassiopeia A supernova remnant (SNR), producing mid-infrared (5.5-35 micron) spectra every 5-10". Gas lines of Ar, Ne, O, Si, S and Fe, and dust continua were strong for most positions. We identify three distinct ejecta dust populations based on their continuum shapes. The dominant dust continuum shape exhibits a strong peak at 21 micron. A line-free map of 21 micron-peak dust made from the 19-23 micron range closely resembles the [Ar II], [O IV], and [Ne II] ejecta-line maps implying that dust is freshly formed in the ejecta. Spectral fitting implies the presence of SiO2, Mg protosilicates, and FeO grains in these regions. The second dust type exhibits a rising continuum up to 21 micron and then flattens thereafter. This ``weak 21 micron'' dust is likely composed of Al2O3 and C grains. The third dust continuum shape is featureless with a gently rising spectrum and is likely composed of MgSiO3 and either Al2O3 or Fe grains. Using the least massive composition for each of the three dust classes yields a total mass of 0.02 Msun. Using the most-massive composition yields a total mass of 0.054 Msun. The primary uncertainty in the total dust mass stems from the selection of the dust composition necessary for fitting the featureless dust as well as 70 micron flux. The freshly formed dust mass derived from Cas A is sufficient from SNe to explain the lower limit on the dust masses in high redshift galaxies.Comment: 8 figures: Accepted for the publication in Ap

    An Analysis of the Shapes of Interstellar Extinction Curves. V. The IR-Through-UV Curve Morphology

    Full text link
    We study the IR-through-UV interstellar extinction curves towards 328 Galactic B and late-O stars. We use a new technique which employs stellar atmosphere models in lieu of unreddened "standard" stars. This technique is capable of virtually eliminating spectral mismatch errors in the curves. It also allows a quantitative assessment of the errors and enables a rigorous testing of the significance of relationships between various curve parameters, regardless of whether their uncertainties are correlated. Analysis of the curves gives the following results: (1) In accord with our previous findings, the central position of the 2175 A extinction bump is mildly variable, its width is highly variable, and the two variations are unrelated. (2) Strong correlations are found among some extinction properties within the UV region, and within the IR region. (3) With the exception of a few curves with extreme (i.e., large) values of R(V), the UV and IR portions of Galactic extinction curves are not correlated with each other. (4) The large sightline-to-sightline variation seen in our sample implies that any average Galactic extinction curve will always reflect the biases of its parent sample. (5) The use of an average curve to deredden a spectral energy distribution (SED) will result in significant errors, and a realistic error budget for the dereddened SED must include the observed variance of Galactic curves. While the observed large sightline-to-sightline variations, and the lack of correlation among the various features of the curves, make it difficult to meaningfully characterize average extinction properties, they demonstrate that extinction curves respond sensitively to local conditions. Thus, each curve contains potentially unique information about the grains along its sightline.Comment: To appear in the Astrophysical Journal, Part 1, July 1, 2007. Figures and Tables which will appear only in the electronic version of the Journal can be obtained via anonymous ftp from ftp://ftp.astronomy.villanova.edu . After logging in, change directories to "fitz/FMV_EXTINCTION". A README file describes the various files present in the director

    The stellar content of the young open cluster Trumpler 37

    Get PDF
    With an apparent cluster diameter of 1.5{\deg} and an age of ~4 Myr, Trumpler 37 is an ideal target for photometric monitoring of young stars as well as for the search of planetary transits, eclipsing binaries and other sources of variability. The YETI consortium has monitored Trumpler 37 throughout 2010 and 2011 to obtain a comprehensive view of variable phenomena in this region. In this first paper we present the cluster properties and membership determination as derived from an extensive investigation of the literature. We also compared the coordinate list to some YETI images. For 1872 stars we found literature data. Among them 774 have high probability of being member and 125 a medium probability. Based on infrared data we re-calculate a cluster extinction of 0.9-1.2 mag. We can confirm the age and distance to be 3-5 Myr and ~870 pc. Stellar masses are determined from theoretical models and the mass function is fitted with a power-law index of alpha=1.90 (0.1-0.4 M_sun) and alpha=1.12 (1-10 M_sun).Comment: 9 pages, 10 figures, 2 long tables, accepte

    Neutrino production through hadronic cascades in AGN accretion disks

    Full text link
    We consider the production of neutrinos in active galactic nuclei (AGN) through hadronic cascades. The initial, high energy nucleons are accelerated in a source above the accretion disk around the central black hole. From the source, the particles diffuse back to the disk and initiate hadronic cascades. The observable output from the cascade are electromagnetic radiation and neutrinos. We use the observed diffuse background X-ray luminosity, which presumably results {}from this process, to predict the diffuse neutrino flux close to existing limits from the Frejus experiment. The resulting neutrino spectrum is E2E^{-2} down to the \GeV region. We discuss modifications of this scenario which reduce the predicted neutrino flux.Comment: 12 Pages, LaTeX, TK 92 0

    Understanding the Spectral Energy Distributions of the Galactic Star Forming Regions IRAS 18314-0720, 18355-0532 & 18316-0602

    Get PDF
    Embedded Young Stellar Objects (YSO) in dense interstellar clouds is treated self-consistently to understand their spectral energy distributions (SED). Radiative transfer calculations in spherical geometry involving the dust as well as the gas component, have been carried out to explain observations covering a wide spectral range encompassing near-infrared to radio continuum wavelengths. Various geometric and physical details of the YSOs are determined from this modelling scheme. In order to assess the effectiveness of this self-consistent scheme, three young Galactic star forming regions associated with IRAS 18314-0720, 18355-0532 and 18316-0602 have been modelled as test cases. They cover a large range of luminosity (\approx 40). The modelling of their SEDs has led to information about various details of these sources, e.g. embedded energy source, cloud structure & size, density distribution, composition & abundance of dust grains etc. In all three cases, the best fit model corresponds to the uniform density distribution.Comment: AAMS style manuscript with 3 tables (in a separate file) and 4 figures. To appear in Journal of Astronophysics & Astronom

    Far infrared mapping of three Galactic star forming regions : W3(OH), S 209 & S 187

    Get PDF
    Three Galactic star forming regions associated with W3(OH), S209 and S187 have been simultaneously mapped in two trans-IRAS far infrared (FIR) bands centered at ~ 140 and 200 micron using the TIFR 100 cm balloon borne FIR telescope. These maps show extended FIR emission with structures. The HIRES processed IRAS maps of these regions at 12, 25, 60 & 100 micron have also been presented for comparison. Point-like sources have been extracted from the longest waveband TIFR maps and searched for associations in the other five bands. The diffuse emission from these regions have been quantified, which turns out to be a significant fraction of the total emission. The spatial distribution of cold dust (T < 30 K) for two of these sources (W3(OH) & S209), has been determined reliably from the maps in TIFR bands. The dust temperature and optical depth maps show complex morphology. In general the dust around S209 has been found to be warmer than that in W3(OH) region.Comment: Accepted for publication in Journal of Astrophysics and Astronomy (20 pages including 8 figures & 3 tables

    CO(4-3) and dust emission in two powerful high-z radio galaxies, and CO lines at high redshifts

    Get PDF
    We report the detection of sub-mm emission from dust at 850 microns and of the 12CO J=4-3 line in the two distant powerful radio galaxies 4C 60.07 (z=3.79) and 6C 1909+722 (z=3.53). In the case of 4C 60.07 the dust emission is also detected at 1.25 mm. The estimated molecular gas masses are large, of the order of ~(0.5-1)x10^{11} Solar. The large FIR luminosities (L_fir ~ 10^{13} Solar) suggest that we are witnessing two major starburst phenomena, while the observed large velocity widths (FWHM > 500 km/sec) are characteristic of mergers. In the case of 4C 60.07 the CO emission extends over ~30 kpc and spans a velocity range of >1000 km/sec. It consists of two distinct features with FWHM of >= 550 km/sec and ~150 km/sec and line centers separated by >=700 km/sec The least massive of these components is probably very gas-rich with potentially >=60% of its dynamical mass in the form of molecular gas. The extraordinary morphology of the CO emission in this object suggests that it is not just a scaled-up version of a local Ultra Luminous Infrared Galaxy, and it may be a formative stage of the elliptical host of the residing radio-loud AGN. Finally we briefly explore the effects of the wide range of gas excitation conditions expected for starburst environments on the luminosity of high-J CO lines. We conclude that in unlensed objects, CO (J+1-->J), J+1>3 lines can be significantly weak with respect to CO J=1-0 and this can hinder their detection even in the presence of substantial molecular gas masses.Comment: 34 pages, 5 figures, accepted for publication in The Astrophysical Journa
    corecore