2,044 research outputs found

    Physiological Electrical Signals Promote Chain Migration of Neuroblasts by Up-Regulating P2Y1 Purinergic Receptors and Enhancing Cell Adhesion

    Get PDF
    Acknowledgments This work was supported by a grant from NHS Grampian. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are creditedPeer reviewedPublisher PD

    Airflow in a Multiscale Subject-Specific Breathing Human Lung Model

    Full text link
    The airflow in a subject-specific breathing human lung is simulated with a multiscale computational fluid dynamics (CFD) lung model. The three-dimensional (3D) airway geometry beginning from the mouth to about 7 generations of airways is reconstructed from the multi-detector row computed tomography (MDCT) image at the total lung capacity (TLC). Along with the segmented lobe surfaces, we can build an anatomically-consistent one-dimensional (1D) airway tree spanning over more than 20 generations down to the terminal bronchioles, which is specific to the CT resolved airways and lobes (J Biomech 43(11): 2159-2163, 2010). We then register two lung images at TLC and the functional residual capacity (FRC) to specify subject-specific CFD flow boundary conditions and deform the airway surface mesh for a breathing lung simulation (J Comput Phys 244:168-192, 2013). The 1D airway tree bridges the 3D CT-resolved airways and the registration-derived regional ventilation in the lung parenchyma, thus a multiscale model. Large eddy simulation (LES) is applied to simulate airflow in a breathing lung (Phys Fluids 21:101901, 2009). In this fluid dynamics video, we present the distributions of velocity, pressure, vortical structure, and wall shear stress in a breathing lung model of a normal human subject with a tidal volume of 500 ml and a period of 4.8 s. On exhalation, air streams from child branches merge in the parent branch, inducing oscillatory jets and elongated vortical tubes. On inhalation, the glottal constriction induces turbulent laryngeal jet. The sites where high wall shear stress tends to occur on the airway surface are identified for future investigation of mechanotransduction.Comment: This submission is part of the APS DFD Gallery of Fluid Motio

    Towards a B2B E-Commerce Evaluation Management Model to Assess Organizational Drivers in Hospitals

    Get PDF
    Effective utilization of business-to-business (B2B) electronic commerce (e-commerce) in hospitals may lead to many benefits such as increased accessibility to healthcare providers, improved process efficiency, enhanced quality of healthcare services, increased responses to changes, decreased scheduling conflicts, and reduction in administrative costs. However, many hospitals have found that they have not yet fully reaped the expected benefits from their B2B e-commerce investments. Despite this, there has not been much discussion in the literature with respect to the relationship between the organizational drivers on B2B e-commerce benefits for hospitals. Hence, a mixed-method of case study and survey was conducted to examine the relationships between B2B e-commerce benefits, IT evaluation resources allocation, IT investment evaluation methodologies, IT maturity, and user information requirements determination process. A B2B e-commerce evaluation management model was developed to test these relationships. The results provided empirical evidence in support of our proposed model and revealed that hospitalsā€™ IT evaluation resources allocation practices mediated the relationship of IT investment evaluation methodologies, IT maturity, and user information requirements determination process with B2B e-commerce benefits. The results also showed that the level of IT maturity had a significant impact on the adoption of IT investment evaluation methodologies

    Acoustic cues to tonal contrasts in Mandarin: Implications for cochlear implants

    Get PDF
    The present study systematically manipulated three acoustic cues-fundamental frequency (f0), amplitude envelope, and duration-to investigate their contributions to tonal contrasts in Mandarin. Simplified stimuli with all possible combinations of these three cues were presented for identification to eight normal-hearing listeners, all native speakers of Mandarin from Taiwan. The f0 information was conveyed either by an f0-controlled sawtooth carrier or a modulated noise so as to compare the performance achievable by a clear indication of voice f0 and what is possible with purely temporal coding of f0. Tone recognition performance with explicit f0 was much better than that with any combination of other acoustic cues (consistently greater than 90% correct compared to 33%-65%; chance is 25%). In the absence of explicit f0, the temporal coding of f0 and amplitude envelope both contributed somewhat to tone recognition, while duration had only a marginal effect. Performance based on these secondary cues varied greatly across listeners. These results explain the relatively poor perception of tone in cochlear implant users, given that cochlear implants currently provide only weak cues to f0, so that users must rely upon the purely temporal (and secondary) features for the perception of tone. (c) 2008 Acoustical Society of America

    Extraction frequencies at a university orthodontic clinic in the 21st century: Demographic and diagnostic factors affecting the likelihood of extraction

    Get PDF
    The aims of this study were 1) to report contemporary orthodontic extraction frequencies at a university center and 2) to investigate what patient-related factors might influence the likelihood of extraction

    Cosmological parameters sigma_8, the baryon density, and the UV background intensity from a calibrated measurement of H I Lyman-alpha absorption at z = 1.9

    Full text link
    We identify a concordant model for the intergalactic medium (IGM) at redshift z=1.9 that uses popular values for cosmological and astrophysical parameters and accounts for all baryons with an uncertainty of 6%. We have measured the amount of absorption, DA, in the Ly-alpha forest at redshift 1.9 in spectra of 77 QSO from the Kast spectrograph. We calibrated the continuum fits with realistic artificial spectra, and we found that averaged over all 77 QSOs the mean continuum level is within 1-2% of the correct value. Absorption from all lines in the Ly-alpha forest at z=1.9 removes DA=15.1 +/- 0.7% of the flux between 1070 and 1170 (rest) Angstroms. This is the first measurement using many QSOs at this z, and the first calibrated measurement at any redshift. Metal lines absorb 2.3 +/- 0.5%, and LLS absorb 1.0 +/- 0.4% leaving 11.8 +/- 1.0% from the lower density bulk of the IGM. Averaging over Delta z=0.1 or 154 Mpc, the dispersion is 6.1 +/- 0.3% including LLS and metal lines, or 3.9 (+0.5, -0.7)% for the lower density IGM alone, consistent with the usual description of large scale structure. LLS and metal lines are major contributors to the variation in the mean flux, and they make the flux field significantly non-Gaussian. We find that a hydrodynamic simulation on a 1024 cubed grid in a 75.7 Mpc box reproduces the observed DA from the low density IGM with parameters values H_o=71 km/s/Mpc, Omega_Lambda=0.73, Omega_m=0.27, Omega_b=0.044, sigma_8=0.9 and a UV background that has an ionization rate that is 1.08 +/- 0.08 times the prediction by Madau, Haardt & Rees (1999).Comment: Submitted to Ap
    • ā€¦
    corecore