research

Cosmological parameters sigma_8, the baryon density, and the UV background intensity from a calibrated measurement of H I Lyman-alpha absorption at z = 1.9

Abstract

We identify a concordant model for the intergalactic medium (IGM) at redshift z=1.9 that uses popular values for cosmological and astrophysical parameters and accounts for all baryons with an uncertainty of 6%. We have measured the amount of absorption, DA, in the Ly-alpha forest at redshift 1.9 in spectra of 77 QSO from the Kast spectrograph. We calibrated the continuum fits with realistic artificial spectra, and we found that averaged over all 77 QSOs the mean continuum level is within 1-2% of the correct value. Absorption from all lines in the Ly-alpha forest at z=1.9 removes DA=15.1 +/- 0.7% of the flux between 1070 and 1170 (rest) Angstroms. This is the first measurement using many QSOs at this z, and the first calibrated measurement at any redshift. Metal lines absorb 2.3 +/- 0.5%, and LLS absorb 1.0 +/- 0.4% leaving 11.8 +/- 1.0% from the lower density bulk of the IGM. Averaging over Delta z=0.1 or 154 Mpc, the dispersion is 6.1 +/- 0.3% including LLS and metal lines, or 3.9 (+0.5, -0.7)% for the lower density IGM alone, consistent with the usual description of large scale structure. LLS and metal lines are major contributors to the variation in the mean flux, and they make the flux field significantly non-Gaussian. We find that a hydrodynamic simulation on a 1024 cubed grid in a 75.7 Mpc box reproduces the observed DA from the low density IGM with parameters values H_o=71 km/s/Mpc, Omega_Lambda=0.73, Omega_m=0.27, Omega_b=0.044, sigma_8=0.9 and a UV background that has an ionization rate that is 1.08 +/- 0.08 times the prediction by Madau, Haardt & Rees (1999).Comment: Submitted to Ap

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019