366 research outputs found

    Effect of diabetes on mortality and length of hospital stay in patients with renal or perinephric abscess

    Get PDF
    OBJECTIVES: We compared the risk of in-hospital mortality and the length of hospital stay between diabetic and non-diabetic patients hospitalized for renal or perinephric abscess. METHOD: The data analyzed in this study were retrieved from Taiwan's National Health Insurance claims. The risk of in-hospital mortality and the length of hospital stay were compared between 1,715 diabetic patients, hospitalized because of renal or perinephric abscess in Taiwan between 1997 and 2007, and a random sample of 477 non-diabetes patients with renal or perinephric abscess. RESULTS: The in-hospital mortality rates from renal or perinephric abscess for the diabetic patients and the non-diabetic patients were not different, at 2.3% and 3.4%, respectively. However, diabetes was significantly associated with a longer length of hospital stay among patients with renal abscess, by 3.38 days (95% confidence interval [CI]: 1.59-5.17). CONCLUSIONS: Diabetes does not increase the risk of in-hospital mortality from renal or perinephric abscess. Nevertheless, appropriate management of patients with diabetes and concurrent renal or perinephric abscess is essential to reduce the length of hospital stay

    Osteoprotective effects of Fructus Ligustri Lucidi aqueous extract in aged ovariectomized rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Fructus Ligustri Lucidi </it>(FLL) is a commonly used herb for treating bone disorders in Chinese medicine. The present study investigates the anti-osteoporotic activity of FLL aqueous extract in the model of postmenopausal bone loss in aged ovariectomized (OVX) female rats.</p> <p>Methods</p> <p>After eight weeks of treatment of FLL or water, the lumbar spine was scanned by peripheral quantitative computed tomography (pQCT). Effects of FLL water extract on osteogenic and adipogenic differentiations in rat mesenchymal stem cells (MSCs) were assessed by biochemical methods and staining.</p> <p>Results</p> <p>FLL aqueous extract significantly inhibited bone mineral density (BMD) loss in total, trabecular and cortical bones without affecting body weight and uterus wet weight. FLL extract significantly promoted osteogenesis and suppressed adipogenesis in MSCs as indicated by the elevated alkaline phosphatase activity, calcium deposition levels and decreased adipocyte number in a dose-dependent manner without cytotoxic effects. Real-time PCR analysis revealed significant increase of osteoprotegerin (OPG)-to-receptor activator for nuclear factor-κB ligand (RANKL) mRNA, indicating a decrease in osteoclastogenesis.</p> <p>Conclusion</p> <p>The present study demonstrates the osteoprotective effects of FLL aqueous extract on aged OVX rats, stimulation of osteogenesis, inhibition of adipogenesis and osteoclastogenesis in MSCs.</p

    Src-family kinase-Cbl axis negatively regulates NLRP3 inflammasome activation.

    Get PDF
    Activation of the NLRP3 inflammasome is crucial for immune defense, but improper and excessive activation causes inflammatory diseases. We previously reported that Pyk2 is essential for NLRP3 inflammasome activation. Here we show that the Src-family kinases (SFKs)-Cbl axis plays a pivotal role in suppressing NLRP3 inflammasome activation in response to stimulation by nigericin or ATP, as assessed using gene knockout and gene knockdown cells, dominant active/negative mutants, and pharmacological inhibition. We reveal that the phosphorylation of Cbl is regulated by SFKs, and that phosphorylation of Cbl at Tyr371 suppresses NLRP3 inflammasome activation. Mechanistically, Cbl decreases the level of phosphorylated Pyk2 (p-Pyk2) through ubiquitination-mediated proteasomal degradation and reduces mitochondrial ROS (mtROS) production by contributing to the maintenance of mitochondrial size. The lower levels of p-Pyk2 and mtROS dampen NLRP3 inflammasome activation. In vivo, inhibition of Cbl with an analgesic drug, hydrocotarnine, increases inflammasome-mediated IL-18 secretion in the colon, and protects mice from dextran sulphate sodium-induced colitis. Together, our novel findings provide new insights into the role of the SFK-Cbl axis in suppressing NLRP3 inflammasome activation and identify a novel clinical utility of hydrocortanine for disease treatment

    Slow conduction and gap junction remodeling in murine ventricle after chronic alcohol ingestion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Long-term heavy alcohol drinkers are prone to the development of cardiac arrhythmia. To understand the mechanisms, we evaluated the cardiac structural and electrophysiological changes in mice chronically drinking excessive alcohol.</p> <p>Results</p> <p>Male C57BL/6J mice were given 36% alcohol in the drinking water. Those given blank water were used as control. Twelve weeks later, the phenotypic characteristics of the heart, including gap junctions and electrical properties were examined. In the alcohol group the ventricles contained a smaller size of cardiomyocytes and a higher density of capillary networks, compared to the control. Western blots showed that, after drinking alcohol, the content of connexin43 (Cx43) protein in the left ventricle was increased by 18% (p < 0.05). Consistently, immunoconfocal microscopy demonstrated that Cx43 gap junctions were up-regulated in the alcohol group with a disorganized distribution, compared to the control. Optical mapping showed that the alcohol group had a reduced conduction velocity (40 ± 18 vs 60 ± 7 cm/sec, p < 0.05) and a higher incidence of ventricular tachyarrhythmia (62% vs 30%, p < 0.05).</p> <p>Conclusion</p> <p>Long-term excessive alcohol intake resulted in extensive cardiac remodeling, including changes in expression and distribution of gap junctions, growth of capillary network, reduction of cardiomyocyte size, and decrease of myocardial conduction.</p

    Rho Kinases Regulate the Renewal and Neural Differentiation of Embryonic Stem Cells in a Cell Plating Density–Dependent Manner

    Get PDF
    [[abstract]]BACKGROUND: Rho kinases (ROCKs) mediate cell contraction, local adhesion, and cell motility, which are considered to be important in cell differentiation. We postulated that ROCKs are involved in controlling embryonic stem (ES) cell renewal and differentiation. METHODOLOGY/PRINCIPAL FINDINGS: CCE, a murine ES cell, was treated with Y-27632 for 48 to 96 hours and colony formation was evaluated. Y-27632 blocked CCE colony formation and induced CCE to grow as individual cells, regardless of the initial seeding cell density either at 10(4)/cm(2) ("high" seeding density) or 2x10(3)/cm(2) ("low" density). However, at high seeding density, Y-27632-treated cells exhibited reduction of alkaline phosphatase (AP) staining and Oct3/4 expression. They expressed SOX-1, nestin, and MAP2c, but not betaIII-tubulin or NG-2. They did not express endoderm or mesoderm lineage markers. After removal of Y-27632, the cells failed to form colonies or regain undifferentiated state. Silencing of ROCK-1 or ROCK-2 with selective small interference RNA induced CCE morphological changes similar to Y-27632. Silencing of ROCK-1 or ROCK-2 individually was sufficient to cause reduction of AP and Oct3/4, and expression of SOX-1, nestin, and MAP2c; and combined silencing of both ROCKs did not augment the effects exerted by individual ROCK siRNA. Y-27632-treated CCE cells seeded at 2x10(3) or 6.6x10(3) cells/cm(2) did not lose renewal factors or express differentiation markers. Furthermore, they were able to form AP-positive colonies after removal of Y-27632 and reseeding. Similar to ROCK inhibition by Y-27632, silencing of ROCK-1 or ROCK-2 in cells seeded at 2x10(3)/cm(2) did not change renewal factors. CONCLUSIONS/SIGNIFICANCE: We conclude that ROCKs promote ES cell colony formation, maintain them at undifferentiated state, and prevent them from neural differentiation at high seeding density. ROCK inhibition represents a new strategy for preparing large numbers of neural progenitor cells

    Assessment of hypermucoviscosity as a virulence factor for experimental Klebsiella pneumoniae infections: comparative virulence analysis with hypermucoviscosity-negative strain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Klebsiella pneumoniae </it>displaying the hypermucoviscosity (HV) phenotype are considered more virulent than HV-negative strains. Nevertheless, the emergence of tissue-abscesses-associated HV-negative isolates motivated us to re-evaluate the role of HV-phenotype.</p> <p>Results</p> <p>Instead of genetically manipulating the HV-phenotype of <it>K. pneumoniae</it>, we selected two clinically isolated K1 strains, 1112 (HV-positive) and 1084 (HV-negative), to avoid possible interference from defects in the capsule. These well-encapsulated strains with similar genetic backgrounds were used for comparative analysis of bacterial virulence in a pneumoniae or a liver abscess model generated in either naïve or diabetic mice. In the pneumonia model, the HV-positive strain 1112 proliferated to higher loads in the lungs and blood of naïve mice, but was less prone to disseminate into the blood of diabetic mice compared to the HV-negative strain 1084. In the liver abscess model, 1084 was as potent as 1112 in inducing liver abscesses in both the naïve and diabetic mice. The 1084-infected diabetic mice were more inclined to develop bacteremia and had a higher mortality rate than those infected by 1112. A mini-Tn<it>5 </it>mutant of 1112, isolated due to its loss of HV-phenotype, was avirulent to mice.</p> <p>Conclusion</p> <p>These results indicate that the HV-phenotype is required for the virulence of the clinically isolated HV-positive strain 1112. The superior ability of the HV-negative stain 1084 over 1112 to cause bacteremia in diabetic mice suggests that factors other than the HV phenotype were required for the systemic dissemination of <it>K. pneumoniae </it>in an immunocompromised setting.</p
    corecore