56 research outputs found

    Tumor size, stage and grade alterations of urinary peptidome in RCC

    Get PDF
    Background: Several promising biomarkers have been found for RCC, but none of them has been used in clinical practice for predicting tumour progression. The most widely used features for predicting tumour aggressiveness still remain the cancer stage, size and grade. Therefore, the aim of our study is to investigate the urinary peptidome to search and identify peptides whose concentrations in urine are linked to tumour growth measure and clinical data. Methods: A proteomic approach applied to ccRCC urinary peptidome (n = 117) based on prefractionation with activated magnetic beads followed by MALDI-TOF profiling was used. A systematic correlation study was performed on urinary peptide profiles obtained from MS analysis. Peptide identity was obtained by LC-ESI-MS/MS. Results: Fifteen, twenty-six and five peptides showed a statistically significant alteration of their urinary concentration according to tumour size, pT and grade, respectively. Furthermore, 15 and 9 signals were observed to have urinary levels statistically modified in patients at different pT or grade values, even at very early stages. Among them, C1RL, A1AGx, ZAG2G, PGBM, MMP23, GP162, ADA19, G3P, RSPH3, DREB, NOTC2 SAFB2 and CC168 were identified. Conclusions: We identified several peptides whose urinary abundance varied according to tumour size, stage and grade. Among them, several play a possible role in tumorigenesis, progression and aggressiveness. These results could be a useful starting point for future studies aimed at verifying their possible use in the managements of RCC patients

    Antigen Retrieval and Its Effect on the MALDI-MSI of Lipids in Formalin-Fixed Paraffin-Embedded Tissue

    Get PDF
    Formalin-fixed paraffin-embedded (FFPE) tissue represents the primary source of clinical tissue and is routinely used in MALDI-MSI studies. However, it is not particularly suitable for lipidomics imaging given that many species are depleted during tissue processing. Irrespective, a number of solvent-resistant lipids remain, but their extraction may be hindered by the cross-link between proteins. Therefore, an antigen retrieval step could enable the extraction of a greater number of lipids and may provide information that is complementary to that which can be obtained from other biomolecules, such as proteins. In this short communication, we aim to address the effect of performing antigen retrieval prior to MALDI-MSI of lipids in FFPE tissue. As a result, an increased number of lipid signals could be detected and may have derived from lipid species that are known to be implicated in the lipid-protein cross-linking that is formed as a result of formalin fixation. Human renal cancer tissue was used as a proof of concept to determine whether using these detected lipid signals were also able to highlight the histopathological regions that were present. These preliminary findings may highlight the potential to enhance the clinical relevance of the lipidomic information obtained from FFPE tissue

    3D gelatin-chitosan hybrid hydrogels combined with human platelet lysate highly support human mesenchymal stem cell proliferation and osteogenic differentiation

    Get PDF
    Bone marrow and adipose tissue human mesenchymal stem cells were seeded in highly performing 3D gelatin–chitosan hybrid hydrogels of varying chitosan content in the presence of human platelet lysate and evaluated for their proliferation and osteogenic differentiation. Both bone marrow and adipose tissue human mesenchymal stem cells in gelatin–chitosan hybrid hydrogel 1 (chitosan content 8.1%) or gelatin–chitosan hybrid hydrogel 2 (chitosan 14.9%) showed high levels of viability (80%–90%), and their proliferation and osteogenic differentiation was significantly higher with human platelet lysate compared to fetal bovine serum, particularly in gelatin–chitosan hybrid hydrogel 1. Mineralization was detected early, after 21 days of culture, when human platelet lysate was used in the presence of osteogenic stimuli. Proteomic characterization of human platelet lysate highlighted 59 proteins mainly involved in functions related to cell adhesion, cellular repairing mechanisms, and regulation of cell differentiation. In conclusion, the combination of our gelatin–chitosan hybrid hydrogels with hPL represents a promising strategy for bone regenerative medicine using human mesenchymal stem cells

    Proteomics and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging as a Modern Diagnostic Tool in Kidney Diseases

    No full text
    As a result of the rapid evolution of modern science, we are continually improving our knowledge of disease pathogenesis and morphology on a daily basis. Due to the era of omics sciences, such as genomics, transcriptomics, and proteomics, there is a strong desire to comprehend the molecular mechanisms of diseases and organisms. The final aims would be to perform more successful diagnosis/prognosis, identify potential therapeutic targets, and predict treatment response. Chronic kidney disease (CKD) is a worldwide health problem with a rapidly increasing incidence, with CKD itself encompassing a large subset of diseases. Recently, modern proteomic technologies, such as matrix-assisted laser desorption/ionization mass spectrometry imaging, have been employed in order to study CKD. Notwithstanding the general infancy of these methodologies, there are already an impressive number of studies and publications related to this subject
    • …
    corecore