74 research outputs found

    Environmental impact assessments of the Three Gorges Project in China: issues and interventions

    Get PDF
    The paper takes China's authoritative Environmental Impact Statement for the Yangzi (Yangtze) Three Gorges Project (TGP) in 1992 as a benchmark against which to evaluate emerging major environmental outcomes since the initial impoundment of the Three Gorges reservoir in 2003. The paper particularly examines five crucial environmental aspects and associated causal factors. The five domains include human resettlement and the carrying capacity of local environments (especially land), water quality, reservoir sedimentation and downstream riverbed erosion, soil erosion, and seismic activity and geological hazards. Lessons from the environmental impact assessments of the TGP are: (1) hydro project planning needs to take place at a broader scale, and a strategic environmental assessment at a broader scale is necessary in advance of individual environmental impact assessments; (2) national policy and planning adjustments need to react quickly to the impact changes of large projects; (3) long-term environmental monitoring systems and joint operations with other large projects in the upstream areas of a river basin should be established, and the cross-impacts of climate change on projects and possible impacts of projects on regional or local climate considered. © 2013 Elsevier B.V.Xibao Xu, Yan Tan, Guishan Yan

    Designing ultrafine lamellar eutectic structure in bimodal titanium alloys by semi-solid sintering

    Get PDF
    We report on a novel approach to design typical ultrafine lamellar eutectic structure in bimodal alloys fabricated by semi-solid sintering (SSS) of a eutectic mixture. In our work ultrafine lamellar eutectic structure was implemented by controlling the phase composition of eutectic reaction and consequently by regulating the structure of eutectic reaction-induced liquid phase through varying component number. Microstructure analysis indicate that although all SSSed alloys have the same three phase constitutions of bcc beta-Ti(Fe Co) and fcc Ti-2(Co Fe) the morphology and distribution of the eutectic structure transforms from limited length and minor quantity to partial fine alternating bcc beta-Ti and bcc Ti(Fe Co) lamellae and further to typical complete ultrafine alternating continuous lamellae in the SSSed ternary Ti-Fe-Co quaternary Ti-Fe-Co-Nb and quinary Ti-Fe-Co-Nb-Al alloys. Interestingly the SSSed Ti-Fe-Co-Nb-Al alloy presents a novel bimodal microstructure of coarse fcc Ti-2(Co Fe) surrounded by an ultrafine lamellar eutectic matrix containing ultrafine bcc beta-Ti and bcc Ti(Fe Co) lamellae. This bimodal microstructure exhibits ultra-high yield strength of 2050 MPa with plasticity in compression of 19.7% which exceed published values of equivalent materials. Our results provide a novel pathway for fabricating new-structure metallic alloys for high-performance structural applications. (C) 2017 Elsevier B.V. All rights reserved.</p

    Mobile TV

    Get PDF
    This article explores how mobile television is being constructed and understood, focusing on four concepts used in contemporary public debate to discuss the technology, namely 'TV in your pocket', 'TV anytime, anywhere', 'TV on the go', and 'Enhanced TV'. Drawing on an analysis of industry reports, conference proceedings, websites, academic studies, press coverage, results of trials, advertisements and expert interviews, we examine the ways in which experts involved in the production, marketing, delivery and analysis of mobile TV regard this emergent technology. It is argued that mobile TV is constructed by these experts as a novel technological and cultural experience and form, while at the same time the rhetoric of novelty is paralleled with a continuous emphasis on the new medium's relation to familiar technological worlds. The article concludes by offering an explanation for this new/old articulation of mobile TV

    Dependence of elastic strain field on the self-organized ordering of quantum dot superlattices

    No full text
    A systematic investigation of the strain distribution of self-organized, lens-shaped quantum dot in the case of growth direction on (001) substrate was presented. The three-dimensional finite element analysis for an array of dots was used for the strain calculation. The dependence of the strain energy density distribution on the thickness of the capping layer was investigated in detail when the elastic characteristics of the matrix material were anisotropic. It is shown that the elastic anisotropic greatly influences the stress, strain, and strain energy density in the quantum dot structures. The anisotropic ratio of the matrix material and the combination with different thicknesses of the capping layer, may lead to different strain energy density minimum locations on the capping layer surface, which can result in various vertical ordering phenomena for the next layer of quantum dots, i.e. partial alignment, random alignment, and complete alignment

    Seasonal Variations of C: N: P Stoichiometry and Their Trade-Offs in Different Organs of Suaeda salsa in Coastal Wetland of Yellow River Delta, China

    No full text
    Variations of plant C: N: P stoichiometry could be affected by both some environmental fluctuations and plant physiological processes. However, the trade-off mechanism between them and their influencial factors were not understood completely. In this study, C, N, P contents and their stoichiometry of S. salsa's plant organs (leaves, stems, and roots), together with their environmental factors including salinity, pH, soil N and soil P, were examined in the intertidal and supratidal habitats of coastal wetlands during the different sampling times (May, July, September, November). The results showed that both plant organ and sampling times affected C, N, and P and stoichiometry of S. salsa in the intertidal and supratidal habitats, however, their influencial conditions and mechanisms were different. In the intertidal habitat, the different slopes of C-P and N-P within interspecific organs suggested that plant P, C: P and N: P of S. salsa were modulated by P concentrations that allocated in the specific organs. However, the slopes of C-N were found to be not significant within interspecific organs, but during the sampling times. These differences of plant N and C: N were related with the physiological demand for N in the specific life history stage. In the supratidal habitat, no significant differences were found in the slopes of C-N, C-P, and N-P within interspecific organs. However, different slopes of C-N among the sampling times also indicated a self-regulation strategy for plant N and C: N of S. salsa in different ontogenetic stages. In contrast to the intertidal habitat, seasonal variations of P, C: P and N: P ratios within interspecific organs reflected the soil P characteristics in the supratidal habitat. Our results showed that the stoichiometric constraint strategy of plant S. salsa in this region was strongly correlated with the local soil nutrient conditions
    corecore