338 research outputs found

    Constraint-based Approach to Reduplication of Non-Ideophonic Words in Korean

    Get PDF

    In/Out Status Monitoring in Mobile Asset Tracking with Wireless Sensor Networks

    Get PDF
    A mobile asset with a sensor node in a mobile asset tracking system moves around a monitoring area, leaves it, and then returns to the region repeatedly. The system monitors the in/out status of the mobile asset. Due to the continuous movement of the mobile asset, the system may generate an error for the in/out status of the mobile asset. When the mobile asset is inside the region, the system might determine that it is outside, or vice versa. In this paper, we propose a method to detect and correct the incorrect in/out status of the mobile asset. To solve this problem, our approach uses data about the connection state transition and the battery lifetime of the mobile node attached to the mobile asset. The connection state transition is used to classify the mobile node as normal or abnormal. The battery lifetime is used to predict a valid working period for the mobile node. We evaluate our method using real data generated by a medical asset tracking system. The experimental results show that our method, by using the estimated battery life time or by using the invalid connection state, can detect and correct most cases of incorrect in/out statuses generated by the conventional approach

    Block of Tetrodotoxin-resistant Na+ Channel Pore by Multivalent Cations: Gating Modification and Na+ Flow Dependence

    Get PDF
    Tetrodotoxin-resistant (TTX-R) Na+ channels are much less susceptible to external TTX but more susceptible to external Cd2+ block than tetrodotoxin-sensitive (TTX-S) Na+ channels. Both TTX and Cd2+ seem to block the channel near the “DEKA” ring, which is probably part of a multi-ion single-file region adjacent to the external pore mouth and is involved in the selectivity filter of the channel. In this study we demonstrate that other multivalent transitional metal ions such as La3+, Zn2+, Ni2+, Co2+, and Mn2+ also block the TTX-R channels in dorsal root ganglion neurons. Just like Cd2+, the blocking effect has little intrinsic voltage dependence, but is profoundly influenced by Na+ flow. The apparent dissociation constants of the blocking ions are always significantly smaller in inward Na+ currents than those in outward Na+ current, signaling exit of the blocker along with the Na+ flow and a high internal energy barrier for “permeation” of these multivalent blocking ions through the pore. Most interestingly, the activation and especially the inactivation kinetics are slowed by the blocking ions. Moreover, the gating changes induced by the same concentration of a blocking ion are evidently different in different directions of Na+ current flow, but can always be correlated with the extent of pore block. Further quantitative analyses indicate that the apparent slowing of channel activation is chiefly ascribable to Na+ flow–dependent unblocking of the bound La3+ from the open Na+ channel, whereas channel inactivation cannot happen with any discernible speed in the La3+-blocked channel. Thus, the selectivity filter of Na+ channel is probably contiguous to a single-file multi-ion region at the external pore mouth, a region itself being nonselective in terms of significant binding of different multivalent cations. This region is “open” to the external solution even if the channel is “closed” (“deactivated”), but undergoes imperative conformational changes during the gating (especially the inactivation) process of the channel

    Accuracy and stability analysis of path loss exponent measurement for localization in wireless sensor network

    Get PDF
    In wireless sensor network localization, path loss model is often used to provide a conversion between distance and received signal strength (RSS). Path loss exponent is one of the main environmental parameters for path loss model to characterize the rate of conversion. Therefore, the accuracy of path loss exponent directly influences the results of RSS-to-distance conversion. When the conversion requires distance estimation from RSS value, small error of measured path loss exponent could lead to large error of the conversion output. To improve the localization results, the approaches of measuring accurate parameters from different environments have become important. Different approaches provide different measurement stabilities, depending on the performance and robustness of the approach. This paper presents four calibration approaches to provide measurements of path loss exponent based on measurement arrangement and transmitter/receiver node’s allocation. These include one-line measurement, online-update spread locations measurement, online-update small-to big rectangular measurement, and online-update big-to-small rectangular measurement. The first two are general approaches, and the last two are our newly proposed approaches. Based on our research experiments, a comparison is presented among the four approaches in terms of accuracy and stability. The results show that both online-update rectangular measurements have better stability of measurements. For accuracy of measurement, online-update big-to-small rectangular measurement provides the best result after convergence

    An optimization of queries in distributed database systems

    Full text link
    This paper addresses the processing of a query in distributed database systems using a sequence of semijoins. The objective is to minimize the intersite data traffic incurred by a distributed query. A method is developed which accurately and efficiently estimates the size of an intermediate result of a query. This method provides the basis of the query optimization algorithm. Since the distributed query optimization problem is known to be intractable, a heuristic algorithm is developed to determine a low-cost sequence of semijoins. The cost comparison with an existing algorithm is provided. The complexity of the main features of the algorithm is analytically derived. The scheduling time for sequences of semijoins is measured for example queries using the PASCAL program which implements the algorithm. All rights of reproduction in any form reserved.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26357/1/0000444.pd

    Annealing effect on photoacoustic characterization of NiSe metal chalcogenide semiconductor using phase signal analysis

    Get PDF
    Nickel selenide (NiSe) has been synthesized by solid state method and annealed at five different temperatures, ranging from 323 K to 823 K. The annealing effect on NiSe thermal and carrier transport properties were investigated by using open-cell photoacoustic technique. From analysis of its phase signal-frequency, thermal diffusivity, carrier diffusion coefficient, surface recombination velocity and recombination lifetime of the NiSe was determined. The results show that with increasing of the annealing temperature of NiSe sample, the thermal diffusivity and the carrier diffusion coefficient increased. The surface recombination velocity was decreasing as the annealing temperature of the sample increased. The increasing of annealing temperature of the sample also affected the trend of band-to-band recombination lifetime
    corecore