151 research outputs found
Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.
Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability
Expression, Localization, and Phosphorylation of Akt1 in Benign and Malignant Thyroid Lesions
The serine/threonine protein kinase Akt is a key molecule in the phosphatidyl inositol 3-kinase pathway that is often overactivated in human cancers. Three Akt isoforms (Akt1, Akt2, Akt3) have been identified in human cells and they show different distribution and have non-redundant functions. The aim of this study was to determine whether the expression, phosphorylation, and localization of Akt1 isoform in human thyroid malignant lesions are different from those in benign lesions. Nuclear and cytoplasmic fractions were isolated from tissue samples and Western blot method was used to detect Akt1 presence in both cellular fractions. Akt1 expression was also assessed by ELISA method. To estimate Akt1 phosphorylation, kinase was immunoprecipitated from cell lysates and tested with anti-phospho-Akt antibodies. The Akt1 expression in majority of thyroid cancer samples was significantly higher than in benign lesions (p < 0.05). Akt1 both in differentiated cancers (follicular and papillary) and benign lesions was localized mainly in cytoplasmic fraction. In two of three anaplastic cancer samples Akt1 was predominantly localized in nucleus. The ratio of phosphorylated Akt1 to total Akt1 was lower in cancers than in non-neoplastic lesions and adenomas. Thus, although Akt1 seems to be overexpressed in thyroid neoplasms, its high phosphorylation is not characteristic for thyroid cancers
A streamlined method for the design and cloning of shRNAs into an optimized Dox-inducible lentiviral vector
The effect Akt2 deletion on tumor development in Pten+/− mice
The serine/threonine kinase Akt is frequently activated in human cancers and is considered an attractive therapeutic target. However, the relative contributions of the different Akt isoforms to tumorigenesis, and the effect of their deficiencies on cancer development are not well understood. We had previously shown that Akt1 deficiency is sufficient to markedly reduce the incidence of tumors in Pten+/− mice. Particularly, Akt1 deficiency inhibits endometrial carcinoma and prostate neoplasia in Pten+/− mice. Here, we analyzed the effect of Akt2 deficiency on the incidence of tumors in Pten+/− mice. Relative to Akt1, Akt2 deficiency had little-to-no effect on the incidence of prostate neoplasia, endometrial carcinoma, intestinal polyps and adrenal lesions in Pten+/− mice. However, Akt2 deficiency significantly decreased the incidence of thyroid tumors in Pten+/−, which correlates with the relatively high level of Akt2 expression in the thyroid. Thus, unlike Akt1 deletion, Akt2 deletion is not sufficient to markedly inhibit tumorigenesis in Pten+/− mice in most tested tissues. The relatively small effect of Akt2 deletion on the inhibition of tumorigenesis in Pten+/− mice could be explained, in part, by an insufficient decrease in total Akt activity, due to the relatively lower Akt2 versus Akt1 expression, and relatively high blood insulin levels in Pten+/−Akt2−/− mice. The relatively high blood insulin levels in Pten+/−Akt2−/− mice may elevate the activity of Akt1, and possibly Akt3, thus, limiting the reduction of total Akt activity and preventing this activity from dropping to a threshold level required to inhibit tumorigenesis
Differential effects of the phosphatidylinositol 4-kinases, PI4KIIα and PI4KIIIβ, on Akt activation and apoptosis
In this study, we investigated the role of PI4P synthesis by the phosphatidylinositol 4-kinases, PI4KIIα and PI4KIIIβ, in epidermal growth factor (EGF)-stimulated phosphoinositide signaling and cell survival. In COS-7 cells, knockdown of either isozyme by RNA interference reduced basal levels of PI4P and PI(4,5)P2, without affecting receptor activation. Only knockdown of PI4KIIα inhibited EGF-stimulated Akt phosphorylation, indicating that decreased PI(4,5)P2 synthesis observed by loss of either isoform could not account for this PI4KIIα-specific effect. Phospholipase Cγ activation was also differentially affected by knockdown of either PI4K isozyme. Overexpression of kinase-inactive PI4KIIα, which induces defective endosomal trafficking without reducing PI(4,5)P2 levels, also reduced Akt activation. Furthermore, PI4KIIα knockdown profoundly inhibited cell proliferation and induced apoptosis as evidenced by the cleavage of caspase-3 and its substrate poly(ADP-ribose) polymerase. However, in MDA-MB-231 breast cancer cells, apoptosis was observed subsequent to knockdown of either PI4KIIα or PI4KIIIβ and this correlated with enhanced proapoptotic Akt phosphorylation. The differential effects of phosphatidylinositol 4-kinase knockdown in the two cell lines lead to the conclusion that phosphoinositide turnover is inhibited through PI4P substrate depletion, whereas impaired antiapoptotic Akt signaling is an indirect consequence of dysfunctional endosomal trafficking
Role of Palladin Phosphorylation by Extracellular Signal-Regulated Kinase in Cell Migration
Phosphorylation of actin-binding proteins plays a pivotal role in the remodeling of the actin cytoskeleton to regulate cell migration. Palladin is an actin-binding protein that is phosphorylated by growth factor stimulation; however, the identity of the involved protein kinases remains elusive. In this study, we report that palladin is a novel substrate of extracellular signal-regulated kinase (ERK). Suppression of ERK activation by a chemical inhibitor reduced palladin phosphorylation, and expression of active MEK alone was sufficient for phosphorylation. In addition, an in vitro kinase assay demonstrated direct palladin phosphorylation by ERK. We found that Ser77 and Ser197 are essential residues for phosphorylation. Although the phosphorylation of these residues was not required for actin cytoskeletal organization, we found that expression of non-phosphorylated palladin enhanced cell migration. Finally, we show that phosphorylation inhibits the palladin association with Abl tyrosine kinase. Taken together, our results indicate that palladin phosphorylation by ERK has an anti-migratory function, possibly by modulating interactions with molecules that regulate cell migration
A Regulatory Mechanism Involving TBP-1/Tat-Binding Protein 1 and Akt/PKB in the Control of Cell Proliferation
TBP-1 /Tat-Binding Protein 1 (also named Rpt-5, S6a or PSMC3) is a multifunctional protein, originally identified as a regulator of HIV-1-Tat mediated transcription. It is an AAA-ATPase component of the 19S regulative subunit of the proteasome and, as other members of this protein family, fulfils different cellular functions including proteolysis and transcriptional regulation. We and others reported that over expression of TBP-1 diminishes cell proliferation in different cellular contexts with mechanisms yet to be defined. Accordingly, we demonstrated that TBP-1 binds to and stabilizes the p14ARF oncosuppressor increasing its anti-oncogenic functions. However, TBP-1 restrains cell proliferation also in the absence of ARF, raising the question of what are the molecular pathways involved. Herein we demonstrate that stable knock-down of TBP-1 in human immortalized fibroblasts increases cell proliferation, migration and resistance to apoptosis induced by serum deprivation. We observe that TBP-1 silencing causes activation of the Akt/PKB kinase and that in turn TBP-1, itself, is a downstream target of Akt/PKB. Moreover, MDM2, a known Akt target, plays a major role in this regulation. Altogether, our data suggest the existence of a negative feedback loop involving Akt/PKB that might act as a sensor to modulate TBP-1 levels in proliferating cells
Subtype-specific CpG island shore methylation and mutation patterns in 30 breast cancer cell lines
BACKGROUND: Aberrant epigenetic modifications, including DNA methylation, are key regulators of gene activity in tumorigenesis. Breast cancer is a heterogeneous disease, and large-scale analyses indicate that tumor from normal and benign tissues, as well as molecular subtypes of breast cancer, can be distinguished based on their distinct genomic, transcriptomic, and epigenomic profiles. In this study, we used affinity-based methylation sequencing data in 30 breast cancer cell lines representing functionally distinct cancer subtypes to investigate methylation and mutation patterns at the whole genome level. RESULTS: Our analysis revealed significant differences in CpG island (CpGI) shore methylation and mutation patterns among breast cancer subtypes. In particular, the basal-like B type, a highly aggressive form of the disease, displayed distinct CpGI shore hypomethylation patterns that were significantly associated with downstream gene regulation. We determined that mutation rates at CpG sites were highly correlated with DNA methylation status and observed distinct mutation rates among the breast cancer subtypes. These findings were validated by using targeted bisulfite sequencing of differentially expressed genes (n=85) among the cell lines. CONCLUSIONS: Our results suggest that alterations in DNA methylation play critical roles in gene regulatory process as well as cytosine substitution rates at CpG sites in molecular subtypes of breast cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12918-016-0356-2) contains supplementary material, which is available to authorized users
Arousal of Cancer-Associated Stroma: Overexpression of Palladin Activates Fibroblasts to Promote Tumor Invasion
Background: Cancer-associated fibroblasts, comprised of activated fibroblasts or myofibroblasts, are found in the stroma surrounding solid tumors. These myofibroblasts promote invasion and metastasis of cancer cells. Mechanisms regulating the activation of the fibroblasts and the initiation of invasive tumorigenesis are of great interest. Upregulation of the cytoskeletal protein, palladin, has been detected in the stromal myofibroblasts surrounding many solid cancers and in expression screens for genes involved in invasion. Using a pancreatic cancer model, we investigated the functional consequence of overexpression of exogenous palladin in normal fibroblasts in vitro and its effect on the early stages of tumor invasion. Principal Findings: Palladin expression in stromal fibroblasts occurs very early in tumorigenesis. In vivo, concordant expression of palladin and the myofibroblast marker, alpha smooth muscle actin (a-SMA), occurs early at the dysplastic stages in peri-tumoral stroma and progressively increases in pancreatic tumorigenesis. In vitro introduction of exogenous 90 kD palladin into normal human dermal fibroblasts (HDFs) induces activation of stromal fibroblasts into myofibroblasts as marked by induction of a-SMA and vimentin, and through the physical change of cell morphology. Moreover, palladin expression in the fibroblasts enhances cellular migration, invasion through the extracellular matrix, and creation of tunnels through which cancer cells can follow. The fibroblast invasion and creation of tunnels results from the development o
Viral Control of Mitochondrial Apoptosis
Throughout the process of pathogen–host co-evolution, viruses have developed a battery of distinct strategies to overcome biochemical and immunological defenses of the host. Thus, viruses have acquired the capacity to subvert host cell apoptosis, control inflammatory responses, and evade immune reactions. Since the elimination of infected cells via programmed cell death is one of the most ancestral defense mechanisms against infection, disabling host cell apoptosis might represent an almost obligate step in the viral life cycle. Conversely, viruses may take advantage of stimulating apoptosis, either to kill uninfected cells from the immune system, or to induce the breakdown of infected cells, thereby favoring viral dissemination. Several viral polypeptides are homologs of host-derived apoptosis-regulatory proteins, such as members of the Bcl-2 family. Moreover, viral factors with no homology to host proteins specifically target key components of the apoptotic machinery. Here, we summarize the current knowledge on the viral modulation of mitochondrial apoptosis, by focusing in particular on the mechanisms by which viral proteins control the host cell death apparatus
- …
